|
Общая физиология возбудимых тканей
Миорелаксанты периферического действия (кураре и курареподобные препараты) широко применяются в анестезиологии. Тубокурарин препятствует деполяризующему действию ацетилхолина. Дитилин приводит к миопаралитическому эффекту, вызывая стойкую деполяризацию постсинаптической мембраны.Ботулотоксин и столбнячный токсин блокируют секрецию медиатора из нервных терминалей.Бетта- и гамма-Бунгаротоксины блокируют холинорецепторы. 6. В зависимости от сократительных свойств, гистохимической окраски и утомляемости мышечные волокна подразделяют на две группы - красные и белые. Все мышечные волокна двигательной единицы принадлежат к одному типу. Функциональной единицей мышечного волокна является миофибрилла . Миофибриллы занимают практически всю цитоплазму мышечного волокна, оттесняя ядра на периферию Различают два типа мышечных волокон. Красные мышечные волокна (волокна 1 типа) содержат большое количество митохондрий с высокой активностью окислительных ферментов. Сила их сокращений сравнительно невелика, а скорость потребления энергии такова, что им вполне хватает аэробного метаболизма. Они участвуют в движениях, не требующих значительных усилий, - например, в поддержании позы. Белым мышечным волокнам (волокнам 2 типа) присуща высокая активность ферментов гликолиза, значительная сила сокращения и такая высокая скорость потребления энергии, для которой уже не хватает аэробного метаболизма. Поэтому двигательные единицы , состоящие из белых волокон, обеспечивают быстрые, но кратковременные движения, требующие рывковых усилий. Плавные произвольные движения начинаются с активации красных волокон. Если (как в норме) окончание мотонейрона выделяет достаточное количество ацетилхолина , а на постсинаптической мембране имеется необходимое количество холинорецепторов , происходит пороговая деполяризация постсинаптической мембраны и возникает потенциал действия. Последний распространяется по мембране мышечного волокна, затем по поперечным трубочкам переходит внутрь и запускает процессы электромеханического сопряжения, заканчивающиеся сокращением мышечного волокна. Каждая миофибрилла имеет периодическое строение. Повторяющаяся структура в составе миофибриллы называется саркомером . Саркомеры соседних миофибрилл расположены друг против друга, отчего все мышечное волокно тоже приобретает периодическое строение. Функции мышц регулируются различными отделами центральной нервной системы (ЦНС), которые во многом определяют характер их разносторонней активности (фазы движения, тонического напряжения и др.). Рецепторы двигательного аппарата дают начало афферентным волокнам двигательного анализатора, которые составляют 30-50% волокон смешанных (афферентно-эфферентных) нервов, направляющихся в спинной мозг. Сокращение мышц вызывает импульсы, которые являются источником мышечного чувства - кинестезии. Передача возбуждения с нервного волокна на мышечное осуществляется через нервно-мышечный синапс ,который состоит из двух разделенных щелью мембран - пресинаптической (нервного происхождения) и постсинаптической (мышечного происхождения). При воздействии нервного импульса выделяются кванты ацетилхолина, который приводит к возникновению электрического потенциала, способного возбудить мышечное волокно. Скорость проведения нервного импульса через синапс в тысячи раз меньше, чем в нервном волокне. Он проводит возбуждение только в направлении к мышце. В норме через нервно-мышечный синапс млекопитающих может пройти до 150 импульсов в одну секунду. При утомлении (или патологии) подвижность нервно-мышечных окончаний снижается, а характер импульсов может изменяться. «Теория скользящих нитей» - концепция, объясняющая механизм сокращения миофибриллы. Разработана в 1954 г. независимо друг от друга Хью Эзмором Хаксли и Сэром Андру Филдингом Хаксли (Н. Е. Huxley, 1924- , английский молекулярный биолог, Sir А. F. Huxley, 1917- , английский физиолог, лауреат Нобелевской премии по физиологии и медицине 1963 г). Согласно данной концепции, укорочение саркомера во время сокращения происходит благодаря активному скольжению актиновых нитей относительно миозиновых нитей. Укорочение заканчивается, когда актиновые нити втягиваются к центру саркомера. При расслаблении или растяжении мышцы область взаимного перекрывания тонких и толстых филаментов пассивно суживается. В настоящее время существуют модели механизма управления взаимодействием актиновых и миозиновых нитей, обеспечивающих сокращение миофибриллы, однако некоторые аспекты этих гипотез остаются пока недоказанными.
7. Решающую роль в мышечном сокращении играют ионы кальция. В мышечном волокне, кроме саркоплазматического ретикулума, имеются поперечные каналы, возникшие из углублений сарколеммы. Активность АТФ-азы регулируется изменением концентрации ионов кальция. В стадии покоя ионы кальция накапливаются в саркоплазматическом ретикулуме. При сокращении они перемещаются в волокна миозина, вызывая активацию АТФ-азы. В результате этого происходит сокращение; затем ионы кальция поступают в саркоплазматический ретикулум, чтобы начать новый цикл мышечного сокращения. Итак, под влиянием ионов кальция укрепляются связи между субъединицами тропонина и одновременно ослабляется контакт тропонина с актином, поэтому последний может занять «открытое» положение. В свою очередь при снижении концентрации ионов кальция взаимодействие субъединиц тропонина ослабляется. Это позволяет субъединице Tnl вступить с актином в прочную связь, вызывая смещение тропомиозина и переход актина в «закрытое» положение, когда реагирова ние с головками миозина невозможно. Роль тропомиозина в этом процессе заключается в передаче блокирующего или деблокирующего эффекта тропонина одновременно семи молекулам актина. В гладкой мышце, как и в скелетной, сократительный процесс активируется ионами кальция, однако источники этих ионов различны. Различие заключается в том, что саркоплазматический ретикулум, обеспечивающий практически все количество ионов кальция для сокращения скелетной мышцы, в большинстве гладких мышц очень слабо развит. В гладкой мышце, как и в скелетной, сократительный процесс активируется ионами кальция, однако источники этих ионов различны. Различие заключается в том, что саркоплазматический ретикулум, обеспечивающий практически все количество ионов кальция для сокращения скелетной мышцы, в большинстве гладких мышц очень слабо развит. Вместо этого почти все ионы кальция, вызывающие сокращение, входят в мышечную клетку из внеклеточной жидкости во время потенциала действия или под влиянием другого стимула. Электромеханическое сопряжение - это последовательность процессов, в результате которых потенциал действия плазматической мембраны мышечного волокна приводит к запуску цикла поперечных мостиков .Электрическая активность плазматической мембраны не оказывает прямого влияния на сократительные белки, а вызывает повышение цитоплазматической концентрации ионов Са2+.
8 Единственным непосредственным источником энергии для мышечного сокращения служит АТФ. Запасов АТФ в мышцах очень мало — хватает на поддержание их работы в течение долей секунды. Поэтому для обеспечения длительной деятельности мышц необходимо постоянное восстановление АТФ. Этот процесс осуществляется в мышцах анаэробным (без участия кислорода) и аэробным (с участием кислорода) путями. В организме человека могут использоваться три основных источника «топлива»: креатин-фосфат (КрФ), углеводы в виде гликогена и глюкозы и жиры. Энергетических систем получения АТФ в работающей мышце тоже три: фосфогенная, гликоли-тическая и окислительная. Восстановление АТФ во время мышечного сокращения происходит почти мгновенно за счет КрФ. При этом работает фосфогенная система, которая способна осуществить восстановление АТФ со скоростью, необходимой для выполнения работы, которая характеризуется максимальной мощностью Обеспечения мышц энергией при более продолжительной физической нагрузке поддерживается за счет гликолитической системы. В основе ее деятельности лежит процесс анаэробного расщепления углеводов (гликогена и глюкозы) до молочной кислоты. При увеличении продолжительности работы энергообеспечение мышц в основном осуществляется за счет окислительной системы и процесса, называемого окислительным фосфорилированием. Это аэробный процесс, то есть он осуществляется при достаточном снабжении мышц кислородом. В качестве энергетических субстратов используются углеводы. Удаление ионов Са2+ от сократительных белков приводит к началу расслабления. При расслаблении концентрация кальция в саркоплазме снижается от 10-5 до 10-7моль*л-1. Это приводит к потере активности АТФ-азы миозина. Головки миозиновых нитей связывают АТФ, но не расщепляют их. Тропонин при отсутствии кальция снова блокирует активные центры тонких нитей. Все это приводит к разрыву актомиозиновых комплексов и расхождению актиновых и миозиновых нитей. Под действием упругих сил белков стромы мышца возвращается в исходное состояние. Таким образом, в процессе сокращения и расслабления мышц АТФ выполняет следующую роль: - в покоящейся мышце – препятствует соединению актиновых нитей с миозиновыми; - в процесс сокращения мышцы – поставляет необходимую энергию для движения тонких нитей относительно толстых, что приводит к укорочению мышцы или развитию напряжения; Процесс мышечного расслабления В настоящее время расслабление считается активным процессом, причем расход энергии больше, чем при сокращении. Источник сокращения - АТФ, расщепляющийся при сокращении. Трупным окоченением принято называть состояние мышц трупа при котором они уплотняются и фиксируют части трупа в определенном положении. Окоченевшее мертвое тело как бы деревенеет. Непосредственно после наступления смерти все мышцы тела человека расслабляются, теряют свойственную им прижизненную упругость, лицо принимает спокойный вид, отсюда, наверное, происходит слово покойник. После прекращения основных процессов жизнедеятельности во всех мышцах тела начинаются сложные биохимические процессы, связанные с преобразованием аденазинтрифосфорной кислоты (АТФ) и высокомолекулярных структур актина и миозина. 9 Механический ответ отдельного мышечного волокна на одиночный потенциал действия называется одиночным сокращением. Последовательность явлений во время изотонического одиночного сокращения. При возбуждении мышечного волокна поперечные мостики начинают развивать силу, однако укорочение не начнется, пока мышечное напряжение не превысит нагрузку на волокно. Таким образом, укорочению предшествует период изометрического сокращения , в течение которого возрастает напряжение.
Суммация силы. Суммация означает сложение отдельных одиночных сокращений, ведущее к увеличению интенсивности общего сокращения мышцы. Суммация осуществляется двумя путями: (1) путем увеличения числа моторных единиц, сокращающихся одновременно, что называют суммацией сокращений многих волокон; (2) путем увеличения частоты сокращений, что называют временной (частотной) суммацией, которая может привести к тетанизации. Тетанус, тетаническое мышечное сокращение— состояние длительного сокращения, непрерывного напряжения мышцы, возникающее при поступлении к ней через мотонейрон нервных импульсов с высокой частотой. При этом расслабления между последовательными одиночными сокращениями не происходит и возникает их суммация, приводящая к стойкому максимальному сокращению мышцы. Различают зубчатый и гладкий тетанус. При зубчатом тетанусе каждый последующий нервный импульс воздействует на начавшую расслабляться мышцу, при этом происходит неполная суммация сокращений. При гладком тетанусе, имеющем бо́льшую амплитуду, воздействие импульса происходит в конце периода укорочения, что приводит к полной суммации сокращений. Пессимальное торможение Деполяризация постсинаптической мембраны при очень частом следовании друг за другом нервных импульсов лежит в основе открытого Н. Е. Введенским пессимального торможения. Это явление часто называют торможением Введенского. Сущность его состоит в следующем. Величина тетанического сокращения скелетной мышцы в ответ на ритмические раздражения нерва возрастает с увеличением частоты стимуляции. При некоторой оптимальной частоте раздражения тетанус достигает наибольшей величины. Если продолжать увеличивать частоту стимуляции нерва, то тетаническое сокращение мышцы начинает резко ослабевать и при некоторой большой пессимальной частоте раздражения нерва мышца, несмотря на продолжающееся раздражение, почти пол ностью расслабляется. Уменьшение частоты стимуляции тотчас приводит к восстановле нию высокого уровня тетанического сокращения.
10. Пути увеличения силы мышечных сокращений в эксперименте и в естественных условиях. Тоническое сокращение мышцы. Контрактура. Величина усилия, развиваемого мышечным волокном, пропорциональна числу миофибрилл в волокне. При мышечной тренировке число миофибрилл увеличивается, что является морфологическим субстратом увеличения силы сокращения мышц.
Изменение силы сокращения наблюдают при ритмической стимуляции скелетных мышц. Одной из причин увеличения силы сокращения в естественных условиях является частота импульсов, генерируемых мотонейронами. Второй причиной этого служат увеличение числа возбуждающихся мотонейронов и синхронизация частоты их возбуждения. Рост числа мотонейронов соответствует увеличению количества двигательных единиц, участвующих в сокращении, а возрастание степени синхронизации их возбуждения способствует увеличению амплитуды при суперпозиции максимального сокращения, развиваемого каждой двигательной единицей в отдельности. Сила сокращения изолированной скелетной мышцы при прочих равных условиях зависит от исходной длины мышцы. Умеренное растяжение мышцы приводит к тому, что развиваемая ею сила возрастает по сравнению с силой, развиваемой нерастянутой мышцей. В естественных условиях сила сокращения скелетных мышц при их растяжении, например при массаже, увеличивается вследствие работы гамма-эфферентов. В тонических волокнах двигательный аксон образует множество синаптических контактов с мембраной мышечного волокна. Развитие сокращения происходит медленно, что обусловлено низкой активностью миозиновой АТФазы. Также медленно происходит и расслабление. Мышечные волокна данного типа эффективно работают в изометрическом режиме. Эти мышечные волокна не генерируют потенциал действия и не подчиняются закону «все или ничего». Одиночный пресинаптический импульс вызывает незначительное сокращение. Серия импульсов вызовет суммацию постсинаптического потенциала и плавно возрастающую деполяризацию мышечного волокна. У человека мышечные волокна этого типа входят в состав наружных мышц глаза. Мышечная контрактура - это болезненное сокращение мышцы, не связанное с деполяризацией мембраны мышечных клеток. С точки зрения физиологии контрактура – длительное не распространяющееся по волокну мышцы сокращение. Механизм возникновения контрактуры биохимия объясняет нарушением процесса восстановления АТФ(аденозинтрифосфорная кислота). 11. Анализ причин развития утомления в организме, нервно-мышечном препарате и в отдельной мышце. Влияние катехоловых аминов на нервно-мышечную передачу при утомлении (феномен Орбели-Гинецинского). Утомление — временное снижение работоспособности. Развивающееся в опыте утомление изолированной мышцы в связи с ее длительной работой выражается в постепенном уменьшении амплитуды сокращений, удлинении фазы расслабления, а также в том, что расслабление постепенно становится все менее полным — развивается контрактура. Специальные исследования обнаружили, что в утомленной мышце уменьшается возбудимость (порог раздражения повышается), удлиняется скрытый период (отрезок времени от момента начала раздражения мышцы до момента начала сокращения),увеличивается вязкость. Необходимо отметить, что эти признаки имеют место и при двигательной деятельности в мышцах всего организма.
Нервно-мышечный препарат содержит в себе три элемента: мышечное волокно, нервно-мышечный синапс и нервное волокно. Опыт показывает, что при утомлении нервно-мышечного препарата изменение функциональных свойств наступает, в первую очередь, в нервно-мышечных синапсах, во вторую очередь, — непосредственно в мышечных волокнах. Что касается нервных проводников, то они, как впервые показал Н.Е. Введенский, практически «неутомимы». Изменение функциональных свойств нервно-мышечных синапсов выражается в нарушении процесса передачи возбуждения с нервных волокон на мышечные.
Утомление организма как результат сдвигов в функциональном состоянии центральной нервной системы. Мышечная работа - это целостная деятельность всего организма. Утомление организма при мышечной работе,прежде всего, связано с утомлением центральной нервной системы, так как интенсивная мышечная деятельность является в то же время и интенсивной деятельностью нервных центров. Последняя в результате длительной напряженной работы нарушается.Выражением этого нарушения является изменение нормального взаимоотношения процессов возбуждения и торможения, причем тормозной процесс начинает преобладать. В результате расстраивается нормальное течение рефлекторных процессов, нарушаются регуляция вегетативных функций и координация движений,двигательный аппарат постепенно приходит в недеятельное состояние. Орбели-Гинецинского феномен
увеличение амплитуды сокращений утомленной икроножной мышцы лягушки при присоединении к ритмическому раздражению передних корешков спинного мозга непродолжительного раздражения соответствующих преганглионарных симпатических волокон.
Катехоламины влияют на миоциты через адренорецепторы двух типов (альфа и бета), которые подразделяются на четыре подтипа (а, и а2, B1 и B2). Воздействие норадреналина на а- и (B-адренорецепторы окончаний холинергических нейронов миэнтерального и подслизистого сплетений угнетает выход ацетилхолина из холинергических окончаний, что ослабляет парасимпатические влияния на миоциты и способствует торможению гладкой мускулатуры. Активация симпатической части нервной системы в результате физических нагрузок приводит к увеличению минутного объема сердца, поддерживает кровоток и обеспечивает продуцирование достаточного количества субстратов для удовлетворения повышенных потребностей организма. Небольшая физическая нагрузка стимулирует только симпатическую часть нервной системы, а более тяжелые нагрузки активизируют также и мозговое вещество надпочечников. |
|
|