Главная страница
Навигация по странице:

  • Примером проявления фенокопий могут служить

  • Пример.шрамы (пример морфоза)

  • 21.Мутационная изменчивость. Классификация мутаций. Соматические и генеративные мутации. Понятие о хромосомных и генных болезнях.

  • 22.Хромосомные мутации, их классификация :делеции, дупликации, инверсии, транслокации. Причины и механизмы возникновения. Значение в развитии патологических состояний человека.

  • 23.Геномные мутации, причины и механизмы их возникновения. Классификация и значение. Антимутационные механизмы.

  • Определение биологии как науки. Предмет и методы биологии. Человек как объект биологии. Биосоциальная природа человека


    Скачать 2.28 Mb.
    НазваниеОпределение биологии как науки. Предмет и методы биологии. Человек как объект биологии. Биосоциальная природа человека
    Анкорotvety.doc
    Дата08.04.2017
    Размер2.28 Mb.
    Формат файлаdoc
    Имя файлаotvety.doc
    ТипДокументы
    #4633
    страница4 из 30
    1   2   3   4   5   6   7   8   9   ...   30

    Фенокопии — изменение признака под влиянием внешних факторов в процессе его развития, зависящего от определенного генотипа, ведущего к копированию признаков, характерных для другого генотипа или его отдельных элементов. Такие изменения вызваны факторами внешней среды, однако их фенотип напоминает (копирует) проявление наследственных синдромов. Возникшие фенотипические модификации не наследуются (генотип не изменяется). Фенотипическая идентичность эффекта мутаций и фенокопии не всегда указывает на прямую связь между действием внешних условий и данной мутацией, т.к. развитие признака идет через ряд связанных между собой звеньев. Конечный фенотипический эффект может не зависеть от того, какое из звеньев цепи было выключено или изменено. Установлено, что возникновение фенокопий связано с влиянием внешних условий на определенную ограниченную стадию развития (воздействия до или после прохождения такой чувствительной фазы не приводят к развитию фенокопий). Более того, один и тот же агент в зависимости от того, на какую фазу он действует, может копировать разные мутации, или же одна стадия реагирует на один агент, другая на другой. Для вызывания одной и той же фенокопии могут быть использованы разные агенты, что указывает на отсутствие связи между результатом изменения и воздействующим фактором. Относительно легко воспроизводятся сложнейшие генетические нарушения развития, тогда как копировать признаки значительно труднее.

    Примером проявления фенокопий могут служить заболевания, приводящие к кретинизму, которые могут обусловливаться наследственными и передовыми (в частности, отсутствием йода в рационе ребенка, независимо от его генотипа) факторами.
    Морфозы — это изменения фенотипа вследствие реакции организма на факторы внешней среды, которым особи в нормальных условиях жизни подвергаются редко или вообще не подвергаются: обычно организм к таким воздействиям не адаптируется. Типичныеморфозы связаны с воздействием различных химических веществ (хемоморфозы) или радиацией (радиоморфозы). Модификации, в отличие от морфозов, являются адаптивными реакциями на внешние воздействия. Модификации не нарушают нормальной жизнедеятельности организма и отношений организма со средой.

    Пример.шрамы (пример морфоза)

    20. Комбинативная изменчивость, причины возникновения. Значение комбинативной изменчивости в обеспечении генетического разнообразия людей. Система браков. Медико-генетические аспекты семьи.

    Комбинативной называют изменчивость, в основе которой лежит образование рекомбинаций, т. е. таких комбинаций генов, которых не было у родителей.

    В основе комбинативной изменчивости лежит половое размножение организмов, вследствие которого возникает огромное разнообразие генотипов. Практически неограниченными источниками генетической изменчивости служат три процесса:

    • Независимое расхождение гомологичных хромосом в первом мейотическом делении. Именно независимое комбинирование хромосом при мейозе является основой третьего закона Менделя. Появление зеленых гладких и желтых морщинистых семян гороха во втором поколении от скрещивания растений с желтыми гладкими и зелеными морщинистыми семенами — пример комбинативной изменчивости.

    • Взаимный обмен участками гомологичных хромосом, или кроссинговер. Он создает новые группы сцепления, т. е. служит важным источником генетической рекомбинации аллелей. Рекомбинантные хромосомы, оказавшись в зиготе, способствуют появлению признаков, нетипичных для каждого из родителей.

    • Случайное сочетание гамет при оплодотворении.

    Эти источники комбинативной изменчивости действуют независимо и одновременно, обеспечивая при этом постоянную «перетасовку» генов, что приводит к появлению организмов с другими генотипом и фенотипом (сами гены при этом не изменяются). Однако новые комбинации генов довольно легко распадаются при передаче из поколения в поколение.

    Комбинативная изменчивость является важнейшим источником всего колоссального наследственного разнообразия, характерного для живых организмов. Однако перечисленные источники изменчивости не порождают существенных для выживания стабильных изменений в генотипе, которые необходимы, согласно эволюционной теории, для возникновения новых видов. Такие изменения возникают в результате мутаций.

    21.Мутационная изменчивость. Классификация мутаций. Соматические и генеративные мутации. Понятие о хромосомных и генных болезнях.

    Мутация – это спонтанное изменение генетического материала. Мутации возникают под действием мутагенных факторов:
    А) физических (радиация, температура, электромагнитное излучение);
    Б) химических (вещества, которые вызывают отравление организма: алкоголь, никотин, колхицин, формалин);
    В) биологических (вирусы, бактерии).
    Различают несколько классификаций мутаций.
    Классификация 1.
    Мутации бывают полезные, вредные и нейтральные. Полезные мутации: мутации, которые приводят к повышенной устойчивости организма (устойчивость тараканов к ядохимикатам). Вредные мутации: глухота, дальтонизм. Нейтральные мутации: мутации никак не отражаются на жизнеспособности организма (цвет глаз, группа крови).
    Классификация 2.
    Мутации бывают соматические и генеративные. Соматические (чаще всего они не наследуются) возникают в соматических клетках и затрагивают лишь часть тела. Они будут наследоваться следующим поколениям при вегетативном размножении. Генеративные (они наследуются, т.к. происходят в половых клетках): эти мутации происходят в половых клетках. Генеративные мутации делятся на ядерные и внеядерные (или митохондриальные).
    Классификация 3.
    По характеру изменений в генотипе мутации подразделяются на генные, хромосомные, геномные.
    Генные мутации (точковые) происходят в результате потери нуклеотида, вставки нуклеотида, замены одного нуклеотида другим. Эти мутации могут приводить к генным болезням: дальтонизм, гемофилия. Таким образом, генные мутации приводят к появлению новых признаков.
    Хромосомные мутации связаны с изменением структуры хромосом. Может произойти делеция – потеря участка хромосомы, дупликация – удвоение участка хромосомы, инверсия – поворот участка хромосомы на 1800, транслокация – это перенос части или целой хромосомы на другую хромосому. Причиной этого может быть разрыв хроматид и их восстановление в новых сочетаниях.
    Геномные мутации приводят к изменению числа хромосом. Различают анеуплоидию и полиплоидию. Анеуплоидия связана с изменением числа хромосом на несколько хромосом (1, 2, 3):
    А) моносомия общая формула 2n-1 (45, Х0), болезнь – синдром Шерешевского-Тернера.
    Б) трисомия общая формула 2n+1 (47, ХХХ или 47, ХХУ) болезнь – синдром Клайнфельтра.
    В) полисомия
    Полиплоидия – это изменение числа хромосом, кратное гаплоидному набору (например: 3n 69).
    Организмы могут быть автоплоидными (одинаковые хромосомы) и аллоплоидными (разные наборы хромосом).

    К хромосомным относятся болезни, обусловленные геномными мутациями или структурными изменениями отдельных хромосом. Хромосомные болезни возникают в результате мутаций в половых клетках одного из родителей. Из поколения в поколение передаются не более 3—5 % из них. Хромосомными нарушениями обусловлены примерно 50 % спонтанных абортов и 7 % всех мёртворождений.
    Все хромосомные болезни принято делить на две группы: аномалии числа хромосом и нарушения структуры хромосом.

    Аномалии числа хромосом

    Болезни, обусловленные нарушением числа аутосом (неполовых) хромосом

    синдром Дауна — трисомия по 21 хромосоме, к признакам относятся: слабоумие, задержка роста, характерная внешность, изменения дерматоглифики;

    синдром Патау — трисомия по 13 хромосоме, характеризуется множественными пороками развития, идиотией, часто — полидактилия, нарушения строения половых органов, глухота; практически все больные не доживают до одного года;

    синдром Эдвардса — трисомия по 18 хромосоме, нижняя челюсть и ротовое отверстие маленькие, глазные щели узкие и короткие, ушные раковины деформированы; 60% детей умирают в возрасте до 3-х месяцев, до года доживают лишь 10%, основной причиной служит остановка дыхания и нарушение работы сердца.

    Болезни, связанные с нарушением числа половых хромосом

    Синдром Шерешевского — Тёрнера — отсутствие одной Х-хромосомы у женщин (45 ХО) вследствие нарушения расхождения половых хромосом; к признакам относится низкорослость, половой инфантилизм и бесплодие, различные соматические нарушения (микрогнатия, короткая шея и др.);

    полисомия по Х-хромосоме — включает трисомию (кариотии 47, XXX), тетрасомию (48, ХХХХ), пентасомию (49, ХХХХХ), отмечается незначительное снижение интеллекта, повышенная вероятность развития психозов и шизофрении с неблагоприятным типом течения;

    полисомия по Y-хромосоме — как и полисомия по X-хромосоме, включает трисомию (кариотии 47, XYY), тетрасомию (48, ХYYY), пентасомию (49, ХYYYY), клинические проявления также схожи с полисомией X-хромосомы;

    Синдром Клайнфельтера — полисомия по X- и Y-хромосомам у мальчиков (47, XXY; 48, XXYY и др.), признаки: евнухоидный тип сложения, гинекомастия, слабый рост волос на лице, в подмышечных впадинах и на лобке, половой инфантилизм, бесплодие; умственное развитие отстает, однако иногда интеллект нормальный.

    Болезни, причиной которых является полиплоидия

    триплоидии, тетраплоидии и т. д.; причина — нарушение процесса мейоза вследствие мутации, в результате чего дочерняя половая клетка получает вместо гаплоидного (23) диплоидный (46) набор хромосом, то есть 69 хромосом (у мужчин кариотип 69, XYY, у женщин — 69, XXX); почти всегда летальны до рождения.

    Нарушения структуры хромосом

    Основная статья: Хромосомные перестройки

    Транслокации — обменные перестройки между негомологичными хромосомами.

    Делеции — потери участка хромосомы. Например, синдром «кошачьего крика» связан с делецией короткого плеча 5-ой хромосомы. Признаком его служит необычный плач детей, напоминающий мяуканье или крик кошки. Это связано с патологией гортани или голосовых связок. Наиболее типичным, помимо «кошачьего крика», является умственное и физическое недоразвитие, микроцефалия (аномально уменьшенная голова).

    Инверсии — повороты участка хромосомы на 180 градусов.

    Дупликации — удвоения участка хромосомы.

    Изохромосомия — хромосомы с повторяющимся генетическим материалом в обоих плечах.

    Возникновение кольцевых хромосом — соединение двух концевых делеций в обоих плечах хромосомы

    Генные болезни – это большая группа заболеваний, возникающих в результате повреждения ДНК на уровне гена. Термин употребляется в отношении моногенных заболеваний, в отличие от более широкой группы - Наследственные заболевания

    Насле́дственныезаболева́ния — заболевания, возникновение и развитие которых связано с дефектами в программном аппарате клеток, передаваемыми по наследству через гаметы

    Причина заболеваний

    В основе наследственных заболеваний лежат нарушения (мутации) наследственной информации — хромосомные, генные и митохондриальные. Отсюда — классификация наследственных заболеваний

    22.Хромосомные мутации, их классификация :делеции, дупликации, инверсии, транслокации. Причины и механизмы возникновения. Значение в развитии патологических состояний человека.

    В основе изменения структуры хромосомы, как правило, лежит первоначальное нарушение ее целостности — разрывы, которые сопровождаются различными перестройками, называемыми хромосомными мутациями.

    Разрывы хромосом происходят закономерно в ходе кроссинговера, когда они сопровождаются обменом соответствующими участками между гомологами. Нарушение кроссинговера, при котором хромосомы обмениваются неравноценным генетическим материалом, приводит к появлению новых групп сцепления, где отдельные участки выпадают — делении — или удваиваются — дупликации. При таких перестройках изменяется число генов в группе сцепления.

    Разрывы хромосом могут возникать также под влиянием различных мутагенных факторов, главным образом физических (ионизирующего и других видов излучения), некоторых химических соединений, вирусов.

    Нарушение целостности хромосомы может сопровождаться поворотом ее участка, находящегося между двумя разрывами, на 180° — инверсия. В зависимости от того, включает ли данный участок область центромеры или нет, различают перицентрические и парацентрические инверсии.

    Фрагмент хромосомы, отделившийся от нее при разрыве, может быть утрачен клеткой при очередном митозе, если он не имеет центромеры. Чаще такой фрагмент прикрепляется к одной из хромосом — транслокация. Возможно присоединение фрагмента к своей же хромосоме, но в новом месте — транспозиция. Таким образом, различные виды инверсий и транслокаций характеризуются изменением локализации генов.

    Таким образом, изменения хромосомной организации, чаще всего оказывающие неблагоприятное воздействие на жизнеспособность клетки и организма, с определенной вероятностью могут быть перспективными, наследоваться в ряду поколений клеток и организмов и создавать предпосылки для эволюции хромосомной организации наследственного материала.




    23.Геномные мутации, причины и механизмы их возникновения. Классификация и значение. Антимутационные механизмы.

    К геномным мутациям относят гаплоидию, полиплоидию и анеуплоидию.

    Анеуплоидией называют изменение количества отдельных хромосом- отсутствие (моносомия) или наличие дополнительных (трисомия, тетрасомия, в общем случае полисомия) хромосом,т.е. несбалансированный хромосомный набор. Клетки с измененным числом хромосом появляются вследствие нарушений в процессе митоза или мейоза, в связи с чем различают митотическую и мейотическую.

    Причины мутаций

    Мутации делятся на спонтанные и индуцированные. Спонтанные мутации возникают самопроизвольно на протяжении всей жизни организма в нормальных для него условиях окружающей среды с частотой около — на нуклеотид за клеточную генерацию.

    Индуцированными мутациями называют наследуемые изменения генома, возникающие в результате тех или иных мутагенных воздействий в искусственных (экспериментальных) условиях или при неблагоприятных воздействиях окружающей среды.

    Мутации появляются постоянно в ходе процессов, происходящих в живой клетке. Основные процессы, приводящие к возникновению мутаций — репликация ДНК, нарушения репарации ДНК и генетическая рекомбинация.

    Связь мутаций с репликацией ДНК

    Многие спонтанные химические изменения нуклеотидов приводят к мутациям, которые возникают при репликации. Например, из-за дезаминированияцитозина напротив него в цепь ДНК может включаться урацил (образуется пара У-Г вместо канонической пары Ц-Г). При репликации ДНК напротив урацила в новую цепь включается аденин, образуется пара У-А, а при следующей репликации она заменяется на пару Т-А, то есть происходит транзиция (точечная замена пиримидина на другой пиримидин или пурина на другой пурин).

    Связь мутаций с рекомбинацией ДНК

    Из процессов, связанных с рекомбинацией, наиболее часто приводит к мутациям неравный кроссинговер. Он происходит обычно в тех случаях, когда в хромосоме имеется несколько дуплицированных копий исходного гена, сохранивших похожую последовательность нуклеотидов. В результате неравного кроссинговера в одной из рекомбинантных хромосом происходит дупликация, а в другой — делеция.

    Связь мутаций с репарацией ДНК

    Спонтанные повреждения ДНК встречаются довольно часто, такие события имеют место в каждой клетке. Для устранения последствий подобных повреждений имеется специальные репарационные механизмы (например, ошибочный участок ДНК вырезается и на этом месте восстанавливается исходный). Мутации возникают лишь тогда, когда репарационный механизм по каким-то причинам не работает или не справляется с устранением повреждений. Мутации, возникающие в генах, кодирующих белки, ответственные за репарацию, могут приводить к многократному повышению (мутаторный эффект) или понижению (антимутаторный эффект) частоты мутирования других генов. Так, мутации генов многих ферментов системы эксцизионной репарации приводят к резкому повышению частоты соматических мутаций у человека, а это, в свою очередь, приводит к развитию пигментной ксеродермы и злокачественных опухолей покровов.

    Классификации мутаций

    Существует несколько классификаций мутаций по различным критериям. Мёллер предложил делить мутации по характеру изменения функционирования гена на гипоморфные (измененные аллели действуют в том же направлении, что и аллели дикого типа; синтезируется лишь меньше белкового продукта), аморфные (мутация выглядит, как полная потеря функции гена, например, мутация white у Drosophila), антиморфные (мутантный признак изменяется, например, окраска зерна кукурузы меняется с пурпурной на бурую) и неоморфные.

    В современной учебной литературе используется и более формальная классификация, основанная на характере изменения структуры отдельных генов, хромосом и генома в целом. В рамках этой классификации различают следующие виды мутаций:

    геномные;

    хромосомные;

    генные:

    Геномные: — полиплоидизацияизменение числа хромосом, не кратное гаплоидному набору. В зависимости от происхождения хромосомных наборов среди полиплоидов различают аллополиплоидов, у которых имеются наборы хромосом, полученные при гибридизации от разных видов, и аутополиплоидов, у которых происходит увеличение числа наборов хромосом собственного генома

    При хромосомных мутациях происходят крупные перестройки структуры отдельных хромосом. В этом случае наблюдаются потеря (делеция) или удвоение части (дупликация) генетического материала одной или нескольких хромосом, изменение ориентации сегментов хромосом в отдельных хромосомах (инверсия), а также перенос части генетического материала с одной хромосомы на другую (транслокация) (крайний случай — объединение целых хромосом.
    1   2   3   4   5   6   7   8   9   ...   30


    написать администратору сайта