Главная страница
Навигация по странице:

  • Коэффициент сцепления

  • Сила тяжести

  • Силы сопротивления движению

  • Сила сопротивления качению

  • Сила сопротивления подъему

  • Сила сопротивления разгону

  • 5.2. Понятие о тяговом балансе автомобиля

  • 5.3. Торможение автомобиля

  • 5.4. Устойчивость автомобиля

  • Основы управления транспортными средствами и безопасность движения


    Скачать 1.29 Mb.
    НазваниеОсновы управления транспортными средствами и безопасность движения
    Анкорouts.doc
    Дата13.12.2017
    Размер1.29 Mb.
    Формат файлаdoc
    Имя файлаouts.doc
    ТипУчебное пособие
    #11261
    страница6 из 11
    1   2   3   4   5   6   7   8   9   10   11

    Сила сцепления равна произведению коэффициента сцепления на сцепной вес. Для тягового автомобиля сцепной вес равен нор­мальной нагрузке, приходящейся на затормаживаемые колеса.

    Коэффициент сцепления зависит от типа и состояния покры­тия дороги, от конструкции и состояния шин (давление воздуха, рисунок протектора), от нагрузки и скорости движения автомо­биля. Величина коэффициента сцепления снижается при мокрой и влажной поверхностях дороги, особенно при увеличении скоро­сти движения и изношенном протекторе шин. Например, при су­хой дороге с асфальтобетонным покрытием коэффициент сцепле­ния равен 0,7 – 0,8, а для мокрой – 0,35 – 0,45. При обледенелой дороге коэффициент сцепления снижается до 0,1 – 0,2.

    Сила тяжести автомобиля приложена в центре тяжести. У современных легковых автомобилей центр тяжести располагает­ся на высоте 0,45 – 0,6 м от поверхности дороги и примерно посе­редине автомобиля. Поэтому нормальная нагрузка легкового ав­томобиля распределяется по его осям примерно поровну, т.е. сцеп­ной вес равен 50 % нормальной нагрузки.

    Высота расположения центра тяжести у грузовых автомоби­лей 0,65 – 1 м. У полностью груженных грузовых автомобилей сцепной вес составляет 60 75 % нормальной нагрузки. У полноп­риводных автомобилей сцепной вес равен нормальной нагрузке автомобиля.

    При движении автомобиля указанные соотношения изменяют­ся, так как происходит продольное перераспределение нормаль­ной нагрузки между осями автомобилям при передаче ведущими колесами тяговой силы больше нагружаются задние колеса, а при торможении автомобиля – передние колеса. Кроме того, перерас­пределение нормальной нагрузки между передними и задними колесами имеет место при движении автомобиля на спуск или на подъем.

    Перераспределение нагрузки, изменяя величину сцепного веса, влияет на величину сцепления колес с дорогой, тормозные свой­ства и устойчивость автомобиля.

    Силы сопротивления движению. Тяговая сила на ведущих колесах

    автомобиля. При равно­мерном движении авто­мобиля по горизонталь­ной дороге такими сила­ми являются: сила сопро­тивления качению и сила сопротивления воздуха. При движении автомоби­ля на подъем возникает сила сопротивления подъему (рис. 5.2), а при разгоне автомобиля – сила сопротивления разгону (сила инерции).

    Сила сопротивления качению возникает вследствие деформа­ции шин и поверхности дороги. Она равна произведению нор­мальной нагрузки автомобиля на коэффициент сопротивления качению.





    Рис.5.1 Схема сил и моментов, действующих на ведущее колесо автомобиля




    Рис.5.2. Схема сил, действующих на автомобиль при равномерном движении на подъем


    Коэффициент сопротивления качению зависит от типа и со­стояния покрытия дороги, конструкции шин, их износа и давле­ния воздуха в них, скорости движения автомобиля. Например, для дороги с асфальтобетонным покрытием коэффициент сопротив­ления качению равен 0,014 0,020, для сухой грунтовой дороги –0,025 – 0,035.

    На твердых дорожных покрытиях коэффициент сопротивле­ния качению резко увеличивается при снижении давления возду­ха в шинах, и возрастает с ростом скорости движения, а также с увеличением тормозного и крутящего моментов.

    Сила сопротивления воздуха зависит от коэффициента сопро­тивления воздуха, лобовой площади и скорости движения авто­мобиля. Коэффициент сопротивления воздуха определяется типом автомобиля и формой его кузова, а лобовая площадь – колеей колес (расстоянием между центрами шин) и высотой автомобиля. Сила сопротивления воздуха возрастает пропорционально квадрату скорости движения автомобиля.

    Сила сопротивления подъему тем больше, чем больше масса автомобиля и крутизна подъема дороги, которая оценивается уг­лом подъема в градусах или величиной уклона, выраженной в процентах. При движении автомобиля под уклон сила сопротив­ления подъему, наоборот, ускоряет движение автомобиля.

    На автомобильных дорогах с асфальтобетонным покрытием продольный уклон обычно не превышает 6%. Вели коэффициент сопротивления качению принять равным 0,02, то общее сопротив­ление дороги составит 8% от нормальной нагрузки автомобиля.

    Сила сопротивления разгону (сила инерции) зависит от массы автомобиля, его ускорения (приросту скорости в единицу време­ни) и массы вращающихся частей (маховик, колеса), на ускорение которых также затрачивается тяговая сила.

    При разгоне автомобиля сила сопротивления разгону направ­лена в сторону, обратную движению. При торможении автомоби­ля и замедлении его движения сила инерции направлена в сторо­ну движения автомобиля.
    5.2. Понятие о тяговом балансе автомобиля
    При движении автомобиля тяговая сила на ведущих колесах автомобиля в каждый данный момент времени равна сумме вне­шних сил сопротивления качению, силе сопротивления воздуха, силе сопротивления подъему и силе сопротивления разгону (силе инерции). Если это равенство записать в виде формулы, то полу­чим тяговый баланс автомобиля




    Рис.5.3. График тягового баланса автомобиля


    Изменение тяговой силы, подводимой к ведущим колесам, в зависимости от скорости движения автомобиля и включенной в коробке передач переда­чи показано на (рис. 5.3). Максимальная тяго­вая сила достигается на первой передаче. На каждой из передач тяго­вая сила имеет макси­мальное значение при определенной скорости, снижаясь далее как с по­вышением скорости, так и с ее уменьшением. Та­кой характер изменения тяговой силы определя­ется характером измене­ния крутящего момента Ме двигателя в зависи­мости от частоты враще­ния коленчатого вала.

    Если на (рис.5.3) провести кривую, соответствующую силе Pf сопротивления качению, от нее отложить значение силы Pw сопротивления воздуха и про­вести кривую суммы этих сил, то получиться график тягового ба­ланса автомобиля. Этот график показывает, например, что при скорости V, отрезок аб равен силе Рг сопротивления качению, от­резок бв – силе Pw сопротивления воздуха, следовательно, отрезок ав равен сумме сил Рг и Pw.

    Так как кривая суммы сил сопротивления в точке в пересекает кривую тяговой силы на V передаче, то в этой точке тяговая сила полностью затрачивается на преодоление сил сопротивления ка­чению и сопротивления воздуха, т.е автомобиль движется равно­мерно с максимально возможной скоростью при заданных дорож­ных условиях (при заданном коэффициенте сопротивления каче­нию).

    При скорости V2 отрезок ав тоже равен сумме сил Pf и Pw, но в данном случае тяговая сила больше указанной суммы сил. Отре­зок вг представляет собой запас Рз тяговой силы, который может быть использован на ускорение движения автомобиля, преодоле­ние подъема и буксирование прицепа. Таким образом, график тя­гового баланса может быть использован при решении практичес­ких задач, т.е. для определения максимальной скорости движения автомобиля, максимального угла подъема дороги, массы букси­руемого прицепа и ускорения автомобиля при разгоне.
    5.3. Торможение автомобиля
    Тормозная динамичность характеризуется способностью авто­мобиля быстро уменьшить скорость и остановиться. Надежная и эффективная тормозная система позволяет водителю уверенно вести автомобиль с большой скоростью и при необходимости ос­тановить его на коротком участке пути. Современные автомоби­ли имеют четыре тормозные системы: рабочую, запасную, стояноч­ную и вспомогательную. Причем, привод ко всем контурам тор­мозной системы раздельный. Наиболее важной для управления и безопасности является рабочая тормозная система. С ее помощью осуществляется служебное и экстренное торможение автомобиля.

    Служебным называют торможение с небольшим замедлением (1–3 м/с2). Его применяют для остановки автомобиля на ранее намеченном месте или для плавного снижения скорости.

    Экстренным называют торможение с большим замедлением, обычно максимальным, доходящим до 8 м/с2. Его применяют в опасной обстановке для предотвращении пасши ни неожиданно появившееся препятствие.

    При торможении автомобиля на и о колеса действует не сила тяги, а тормозные силы Рт1 и Рт2, как показано на (рис. 5.4). Сила инерции в этом случае направлена в сторону движения автомобиля.

    Рассмотрим процесс экстренного торможения. Водитель заметив препятствие, оценивает дорожную обстанов­ку, принимает решение о торможении и переносит ногу на тормозную педаль. Время t , необходимое для этих действий (время реакции водителя), изображено на (рис. 5.4) отрезком АВ. Авто­мобиль за это время проходит путь S не снижая скорости. Затем водитель нажимает на тормозную педаль и давление от главного тормозного цилиндра (или тормозного крана) передается колес­ным тормозам (время срабатывания тормозного привода t – от­резок ВС. Время tт зависит в основном от конструкции тормозного при­вода. Оно равно в среднем 0,2–0,4 с у автомобилей с гидравличес­ким приводом и 0,6–0,8 с с пневматическим. У автопоездов с пнев­матическим тормозным приводом время tт может достигать 2–3 с. Автомобиль за время tт проходит путь Sт, так же не снижая ско­рости.




    Рис. 5.4. Остановочный и тормозной пути автомобиля


    По истечении времени tрт тормозная система полностью вклю­чена (точка С), и скорость автомобиля начинает снижаться. При этом замедление сначала увеличивается (отрезок CD, время нара­стания тормозной силы tнт), а затем остается примерно постоян­ным (установившимся) и равным jуст (время t уст, отрезок DE). Дли­тельность периода tнт зависит от массы транспортного средства, типа и состояния дорожного покрытия. Чем больше масса авто­мобиля и коэффициент сцепления шин с дорогой, тем больше вре­мя t. Значение этого времени находится в пределах 0,1–0,6 с. За время tнт автомобиль перемещается на расстояние Sнт,, и скорость его несколько снижается.

    При движении с установившимся замедлением (время tуст, от­резок DE), скорость автомобиля за каждую секунду уменьшается на одну и ту же величину. В конце торможения она падает до нуля (точка Е), и автомобиль, пройдя путь Sуст, останавливается. Води­тель снимает ногу с тормозной педали и происходит оттормажи–вание (время оттормаживания t, участок EF).

    Если тормозные силы на всех колесах достигли максимально­го значения (силы сцепления шин с дорогой), то установившееся

    замедление jyct=jxg.
    , (5.1)
    Однако под действием силы инерции передний мост при тор­можении нагружается, а задний, напротив, разгружается. Поэто­му реакция на передних колесах Rzl увеличивается, а на задних Rz2 уменьшается. Соответственно изменяются силы сцепления, поэто­му у большинства автомобилей полное и одновременное исполь­зование сцепления всеми колесами автомобиля наблюдается край­не редко и фактическое замедление меньше максимально возмож­ного. Чтобы учесть снижение замедления, в формулу для опреде­ления jуст приходится вводить поправочный коэффициент эффек­тивности торможения K, равный 1,1–1,15 для легковых автомо­билей и 1,3–1,5 для грузовых автомобилей и автобусов. На сколь­зких дорогах тормозные силы на всех колесах автомобиля прак­тически одновременно достигают значения силы сцепления. По­этому при jx < 0,4 принимают Кэ = 1 независимо от типа автомоби­ля. Фактически установившееся замедление j уст = jxg/K3
    , (5.2)
    ъВремя движения автомобиля с установившимся замедлением

    где 3,6 – переводной коэффициент.

    Полное время, необходимое для остановки (оста­новочное время):

    Расстояние, на котором можно остановить автомобиль, дви­жущийся со скоростью V (остановочный путь):

    Безопасность можно обеспечить только в том случае, если ос­тановочный путь автомобиля меньше расстояния Sа до препятствия (рис. 5.4,а) и расстояние а равно 0,5–1,0 м.

    Чтобы оценить эффективность рабочей тормозной системы, определяют тормозной путь, т.е . расстояние, на которое переме­щается автомобиль с момента касания тормозной педали до оста­новки:
    (5.3)
    Тормозной путь меньше остановочного, т.к. за время реакции водителя автомобиль перемещается на значительное расстояние. Остановочный и тормозной пути увеличиваются с ростом скорос­ти и уменьшением коэффициента сцепления. Минимально допус­тимые значения тормозного пути при начальной скорости 40 км/ч на горизонтальной дороге с сухим, чистым и ровным покрытием нормированы.
    (5,4)
    Эффективность тормозной системы в большой степени зави­сит от ее технического состояния и технического состояния шин. В случае проникновения в тормозную систему масла или воды снижается коэффициент трения между тормозными накладками и барабанами (или дисками), и тормозной момент уменьшается. При износе протекторов шин уменьшается коэффициент сцепления. Это влечет за собой снижение тормозных сил. В эксплуатации часто тормозные силы левых и правых колес автомобиля различ­ны, что вызывает его поворот вокруг вертикальной оси. Причи­нами могут быть различный износ тормозных накладок и бараба­нов или шин или проникновение в тормозную систему одной сто­роны автомобиля масла или воды, уменьшающих коэффициент трения и снижающих тормозной момент.
    5.4. Устойчивость автомобиля
    Под устойчивостью понимают свойства автомобиля противо­стоять заносу, скольжению, опрокидыванию. Различают продоль­ную и поперечную устойчивость автомобиля. Более вероятна и опасна потеря поперечной устойчивости.

    Курсовой устойчивостью автомобиля называют его свойство двигаться в нужном направлении без корректирующих воздействий со стороны водителя, т.е. при неизменном положении руле­вого колеса. Автомобиль с плохой курсовой устойчивостью все время неожиданно меняет направление движения. Это создает уг­розу другим транспортным средствам и пешеходам. Водитель, управляя неустойчивым автомобилем, вынужден особенно вни­мательно следить за дорожной обстановкой и постоянно коррек­тировать движение, чтобы предотвратить выезд за пределы доро­ги. При длительном управлении таким автомобилем водитель быстро утомляется, повышается возможность ДТП.

    Нарушение курсовой устойчивости происходит в результате действия возмущающих сил, например, порывов бокового ветра, ударов колес о неровности дороги, а также из–за резкого поворо­та управляемых колес водителем. Потеря устойчивости может быть вызвана и техническими неисправностями (неправильная регулировка тормозных механизмов, излишний люфт в рулевом управлении или его заклинивание, прокол шины и др.)

    Особенно опасна потеря курсовой устойчивости при большой скорости. Автомобиль, изменив направление движения и откло­нившись даже на небольшой угол, может через короткое время оказаться на полосе встречного движения. Так, если автомобиль, движущийся со скоростью 80 км/ч, отклонится от прямолинейно­го направления движения всего на 5°, то через 2,5с он перемес­титься в сторону почти на I м и водитель может не успеть вернуть автомобиль на прежнюю полосу.








    а)

    б)




    в)

    Рис.5.5. Схема сил, действующих на автомобиль

    Часто автомобиль теряет устойчивость при движении по до­роге с поперечным уклоном (косогору) и при повороте на гори­зонтальной дороге. Если автомобиль движется по косогору (рис.5.5,а) сила тяжести G составляет с поверхностью дороги угол и ее можно разложить на две составляющие: силу Р1, параллельную дороге, и силу Р2, перпендикулярную ей. Сила Р1, стремиться сдви­нуть автомобиль под уклон и опрокинуть его. Чем больше угол косогора , тем больше сила Р1 , следовательно, тем вероятнее по­теря поперечной устойчивости. При повороте автомобиля причи­ной потери устойчивости является центробежная сила Рц (рис. 5.5,б), направленная от центра поворота и приложенная к цент­ру тяжести автомобиля. Она прямо пропорциональна квадрату скорости автомобиля и обратно пропорциональна радиусу кри­визны его траектории.

    Поперечному скольжению шин по дороге противодействуют силы сцепления, как уже отмечалось выше, которые зависят от коэффициента сцепления. На сухих, чистых покрытиях силы сцеп­ления достаточно велики, и автомобиль не теряет устойчивости даже при большой поперечной силе. Если дорога покрыта слоем мокрой грязи или льда, автомобиль может занести даже в том случае, когда он движется с небольшой скоростью по сравнительно пологой кривой.
    , (5.5)
    Максимальная скорость, с которой можно двигаться по кри­волинейному участку радиусом R без поперечного скольжения шин, равна

    Так, выполняя поворот на сухом асфальтобетонном покрытии (jx=0,7) при R=50м, можно двигаться со скоростью около 66 км/ч. Преодолевая тот же поворот после дождя (jx=0,3) без скольжения можно двигаться лишь при скорости 40–43 км/ч. Поэтому перед поворотом нужно уменьшить скорость тем больше, чем меньше радиус предстоящего поворота. Формула (5.5) определяет ско­рость, при которой колеса обоих мостов автомобиля скользят в поперечном направлении одновременно. Такое явление в практи­ке наблюдается крайне редко. Гораздо чаще начинают скользить шины одного из мостов – переднего или заднего. Поперечное скольжение переднего моста возникает редко и к тому же быстро прекращается. В большинстве скользят колеса заднего моста, ко­торые, начав двигаться в поперечном направлении, скользят все быстрее. Такое ускоряющееся поперечное скольжение называют заносом. Для гашения начавшегося заноса нужно повернуть ру­левое колесо в сторону заноса. Автомобиль при этом начнет дви­гаться по более пологой кривой, радиус поворота увеличиться, а центробежная сила уменьшится. Поворачивать рулевое колесо нужно плавно и быстро, но не на очень большой угол, чтобы не вызвать поворот в противоположную сторону. Как только занос прекратиться, нужно также плавно и быстро вернуть рулевое ко­лесо в нейтральное положение. Следует также заметить, что для выхода из заноса заднеприводного автомобиля подачу топлива нужно уменьшить, а на переднеприводном, напротив, увеличить.

    Часто занос возникает во время экстренного торможения, ког­да сцепление шин с дорогой уже использовано для создания тормозных сил. В этом случае следует немедленно прекратить или ослабить торможение и тем самым повысить поперечную устой­чивость автомобиля.

    Под действием поперечной силы автомобиль может не толь­ко скользить по дороге, по и опрокинуться на бок или на кры­шу. Возможность опрокидывания зависит от положения цент­ра, тяжести автомобиля. Чем выше от поверхности автомобиля находится центр тяжести, тем вероятнее опрокидывание. Осо­бенно часто опрокидываются автобусы, а также грузовые ав­томобили, занятые на перевозке легковесных, объемных гру­зов (сено, солома, пустая тара и т.д.) и жидкостей. Под действи­ем поперечной силы рессоры с одной стороны автомобиля сжи­маются и кузов его наклоняется, увеличивая опасность опро­кидывания.

    Максимальная скорость, с которой можно преодолевать по­ворот без опрокидывания равна:
    (5.6)
    где n – коэффициент, учитывающий поперечный наклон (крен) кузова на подвеске; R – 0,9 для легковых автомобилей и 0,8 для грузовых и автобусов;

    В – колея автомобиля, м;

    h – высота центра тяжести, м.

    Если по формулам (5.4) и (5.5 ) подсчитать скорости Vck и Von , то почти всегда окажется, что Vckom . Следовательно, при одной и той же скорости поперечное скольжение шин и занос наи­более вероятны, чем опрокидывание. Однако это не совсем верно, так как, определяя скорость Vck, мы считали, что центробежной силе противодействуют только силы сцепления, удерживающие автомобиль. Но, возможно, что поперечному скольжению авто­мобиля помешает какое – либо препятствие (неровность дороги, бордюрный камень тротуара и т.д.). В этом случае автомобиль может опрокинуться и без скольжения шин.

    Особенно опасным является сочетание криволинейного участ­ка дороги с поперечным уклоном. На (рис. 34.5,в) показаны два автомобиля, движущихся по криволинейному участку: автомобиль I – по внешнему краю дороги, а автомобиль II – по внутреннему. Разложим силу веса G и центробежную силу Р у каждого автомо­биля на два направления: перпендикулярно к дорожному полот­ну (силы Р2 и Рц2) и параллельное ему (Р, и Рц|). У автомобиля II силы Р2 и Рц2 складываются, увеличивая силу сцепления шин с до­рогой. Силы же Р, и Рц1 действуют в противоположных направ­лениях и частично уравновешивают одна другую. У автомобиля I, напротив, сила Рц2, действуя в направлении, противоположном силе Р2 уменьшает силу сцепления шин с дорогой, а силы Pj и Р , складываются, увеличивая возможность нарушения устойчивос­ти автомобиля. Таким образом, на дорогах с двускатной проез­жей частью, всегда более опасен левый поворот автомобиля.

    Для создания необходимой безопасности движения на доро­гах с малым радиусом поворота устраивают односкатный попе­речный профиль – вираж. На вираже проезжая часть и обочины имеют поперечный наклон к центру кривой. При наличии виража, независимо от направления движения автомобиля, составля­ющие сил Рц и G направлены также, как у автомобиля II, и обеспе­чивают сохранение поперечной устойчивости. Поперечный уклон виража увеличивают при уменьшении радиуса поворота.
    1   2   3   4   5   6   7   8   9   10   11


    написать администратору сайта