Отчет Нартикоев. Отчет по практике Вид практики Производственная (преддипломная) практика Выполнил студент
Скачать 0.88 Mb.
|
ЗаключениеВ статье исследуется устойчивость и сходимость неявных разностных схем, аппроксимирующих пространственно-временное дробное уравнение конвекции-диффузии общего вида. Получены достаточные условия безусловной устойчивости таких разностных схем. Для доказательства устойчивости широкого класса разностных схем, аппроксимирующих уравнение дробной диффузии по времени, достаточно просто проверить условия устойчивости, полученные в данной статье. Между тем, новые разностные схемы второго построены также порядок аппроксимации по пространству и второй порядок аппроксимации по времени для ПВДУКД с переменными коэффициентами (в терминах t). Доказана устойчивость и сходимость этих неявных схем в сеточной L2-норме со скоростью, равной порядку ошибки аппроксимации. Метод может быть легко адаптирован к другим ПВДУКД с другими граничными условиями. Проведены численные испытания, полностью подтверждающие полученные теоретические результаты. Что еще более важно, с помощью (3.1) мы можем улучшить навыки вычислений за счет реализации надежных итерационных методов предварительного кондиционирования, с только вычислительными затратами и памятью в размере O ( ) и O ( ), соответственно. Обширные численные результаты сообщаются, чтобы проиллюстрировать эффективность предлагаемых методов предварительного кондиционирования. В будущей работе мы сосредоточимся на расширении предлагаемой НРС для обработки двух / трех - мерных ПВДУКД с помощью методов быстрого решения с учетом различных граничных значений. Между тем, мы также сосредоточимся на разработке других эффективных предобуславливателями для ускорения сходимости решателя подпространств Крылова для дискретизированных. Список литературы[1] I. Podlubny, Fractional Differential Equations, vol. 198 of Mathematics in Science and Engineering, Academic Press, Inc., San Diego, CA, 1999. [2] S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach Science Publishers, Yverdonn, 1993. [3] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006. [4] R. Metzler, J. Klafter, The random walk’s guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep., 339 (2000), pp. 1-77. [5] A.I. Saichev, G.M. Zaslavsky, Fractional kinetic equations: solutions and applications, Chaos, 7 (1997), pp. 753-764. Available online at http://dx.doi.org/10.1063/1.166272. [6] Y. Povstenko, Space-time-fractional advection diffusion equation in a plane, in Advances in Modelling and Control of Non-integer-Order Systems, K.J. Latawiec, M. Lukaniszyn, R. Stanis lawski eds., Volume 320 of the series Lecture Notes in Electrical Engineering, Springer, 2015, pp. 275-284. [7] D.A. Benson, S.W. Wheatcraft, M.M. Meerschaert, Application of a fractional advection-dispersion equation, Water Resour. Res., 36 (2000), pp. 1403-1412. [8] Y.Z. Povstenko, Fundamental solutions to time-fractional advection diffusion equation in a case of two space variables, Math. Probl. Eng., 2014 (2014), Article ID 705364, 7 pages. Available online at http://dx.doi.org/10.1155/2014/705364. [9] M.M. Meerschaert, C. Tadjeran, Finite difference approximations for fractional advection-dispersion flow equations, J. Comput. Appl. Math., 172 (2004), pp. 65- 77. [10] L. Su, W. Wang, Q. Xu, Finite difference methods for fractional dispersion equations, Appl. Math. Comput., 216 (2010), pp. 3329-3334. [11] L. Su, W. Wang, Z. Yang, Finite difference approximations for the fractional advection-diffusion equation, Phys. Lett. A, 373 (2009), pp. 4405-4408. [12] E. Sousa, Finite difference approximations for a fractional advection diffusion problem, J. Comput. Phys., 228 (2009), pp. 4038-4054. [13] L. Su, W. Wang, H. Wang, A characteristic difference method for the transient fractional convection-diffusion equations, Appl. Numer. Math., 61 (2011), pp. 946- 960. [14] K. Wang, H. Wang, A fast characteristic finite difference method for fractional advection-diffusion equations, Adv. Water Resour., 34 (2011), pp. 810-816. [15] Z. Deng, V. Singh, L. Bengtsson, Numerical solution of fractional advection-dispersion equation, J. Hydraul. Eng., 130 (2004), pp. 422-431. [16] Z. Ding, A. Xiao, M. Li, Weighted finite difference methods for a class of space fractional partial differential equations with variable coefficients, J. Comput. Appl. Math., 233 (2010), pp. 1905-1914. [17] F. Liu, P. Zhuang, K. Burrage, Numerical methods and analysis for a class of fractional advection-dispersion models, Comput. Math. Appl., 64 (2012), pp. 2990-3007. [18] S. Momani, A.A. Rqayiq, D. Baleanu, A nonstandard finite difference scheme for two-sided space-fractional partial differential equations, Int. J. Bifurcat. Chaos, 22 (2012), 1250079, 5 pages. Available online at http://dx.doi.org/10.1142/S0218127412500794. [19] M. Chen, W. Deng, A second-order numerical method for two-dimensional two-sided space fractional convection diffusion equation, Appl. Math. Model., 38 (2014), pp. 3244-3259. [20] W. Deng, M. Chen, Efficient numerical algorithms for three-dimensional fractional partial differential equations, J. Comp. Math., 32 (2014), pp. 371-391. [21] W. Qu, S.-L. Lei, S.-W. Vong, Circulant and skew-circulant splitting iteration for fractional advection-diffusion equations, Int. J. Comput. Math., 91 (2014), pp. 2232- 2242. [22] N.J. Ford, K. Pal, Y. Yan, An algorithm for the numerical solution of two-sided space-fractional partial differential equations, Comput. Methods Appl. Math., 15 (2015), pp. 497-514. [23] A.H. Bhrawy, D. Baleanu, A spectral Legendre-Gauss-Lobatto collocation method for a space-fractional advection diffusion equations with variable coefficients, Rep. Math. Phys., 72 (2013), pp. 219-233. [24] A.H. Bhrawy, M.A. Zaky, A method based on the Jacobi tau approximation for solving multi-term time-space fractional partial differential equations, J. Comput. Phys., 281 (2015), pp. 876-895. [25] H. Hejazi, T. Moroney, F. Liu, Stability and convergence of a finite volume method for the space fractional advection-dispersion equation, J. Comput. Appl. Math., 255 (2014), pp. 684-697. [26] W.Y. Tian, W. Deng, Y. Wu, Polynomial spectral collocation method for space fractional advection-diffusion equation, Numerical Methods for Partial Differential Equations, 30 (2014), pp. 514-535. [27] Y. Lin, C. Xu, Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys., 225 (2007), pp. 1533-1552. [28] M. Cui, A high-order compact exponential scheme for the fractional convection-diffusion equation, J. Comput. Appl. Math., 255 (2014), pp. 404-416. [29] M. Cui, Compact exponential scheme for the time fractional convection-diffusion reaction equation with variable coefficients, J. Comput. Phys., 280 (2015), pp. 143- 163. [30] A. Mohebbi, M. Abbaszadeh, Compact finite difference scheme for the solution of time fractional advection-dispersion equation, Numer. Algorithms, 63 (2013), pp. 431-452. [31] S. Momani, An algorithm for solving the fractional convection-diffusion equation with nonlinear source term, Commun. Nonlinear Sci. Numer. Simul., 12 (2007), pp. 1283-1290. [32] Z. Wang, S. Vong, A high-order exponential ADI scheme for two-dimensional time fractional convection-diffusion equations, Comput. Math. Appl., 68 (2014), pp. 185- 196. [33] Z.-J. Fu, W. Chen, H.-T. Yang, Boundary particle method for Laplace transformed time fractional diffusion equations, J. Comput. Phys., 235 (2013), pp. 52-66. [34] S. Zhai, X. Feng, Y. He, An unconditionally stable compact ADI method for threedimensional time-fractional convection-diffusion equation, J. Comput. Phys., 269 (2014), pp. 138-155. [35] P. Zhuang, Y.T. Gu, F. Liu, I. Turner, P.K.D.V. Yarlagadda, Time-dependent fractional advection-diffusion equations by an implicit MLS meshless method, Int. J. Numer. Meth. Eng., 88 (2011), pp. 1346-1362. [36] Y.-M. Wang, A compact finite difference method for solving a class of time fractional convection-subdiffusion equations, BIT, 55 (2015), pp. 1187-1217. [37] Y. Zhang, A finite difference method for fractional partial differential equation, Appl. Math. Comput., 215 (2009), pp. 524-529. [38] Y. Zhang, Finite difference approximations for space-time fractional partial differential equation, J. Numer. Math., 17 (2009), pp. 319-326. [39] Y. Shao, W. Ma, Finite difference approximations for the two-side space-time fractional advection-diffusion equations, J. Comput. Anal. Appl., 21 (2016), pp. 369-379. [40] P. Qin, X. Zhang, A numerical method for the space-time fractional convectiondiffusion equation, Math. Numer. Sin., 30 (2008), pp. 305-310. (in Chinese) [41] F. Liu, P. Zhuang, V. Anh, I. Turner, K. Burrage, Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation, Appl. Math. Comput., 191 (2007), pp. 12-20. [42] Z. Zhao, X.-Q. Jin, M.M. Lin, Preconditioned iterative methods for space-time fractional advection-diffusion equations, J. Comput. Phys., 319 (2016), pp. 266-279. [43] S. Shen, F. Liu, V. Anh, Numerical approximations and solution techniques for the space-time Riesz-Caputo fractional advection-diffusion equation, Numer. Algorithms, 56 (2011), pp. 383-403. [44] M. Parvizi, M.R. Eslahchi, M. Dehghan, Numerical solution of fractional advectiondiffusion equation with a nonlinear source term, Numer. Algorithms, 68 (2015), pp. 601-629. [45] Y. Chen, Y. Wu, Y. Cui, Z. Wang, D. Jin, Wavelet method for a class of fractional convection-diffusion equation with variable coefficients, J. Comput. Sci., 1 (2010), pp. 146-149. [46] S. Irandoust-pakchin, M. Dehghan, S. Abdi-mazraeh, M. Lakestani, Numerical solution for a class of fractional convection-diffusion equations using the flatlet oblique multiwavelets, J. Vib. Control, 20 (2014), pp. 913-924. [47] A.H. Bhrawy, M.A. Zaky, J.A. Tenreiro Machado, Efficient Legendre spectral tau algorithm for solving the two-sided space-time Caputo fractional advection-dispersion equation, J. Vib. Control, 22 (2016), pp. 2053-2068. [48] H. Hejazi, T. Moroney, F. Liu, A finite volume method for solving the two-sided time-space fractional advection-dispersion equation, Cent. Eur. J. Phys., 11 (2013), pp. 1275-1283. [49] W. Jiang, Y. Lin, Approximate solution of the fractional advection-dispersion equation, Comput. Phys. Commun., 181 (2010), pp. 557-561. [50] J. Wei, Y. Chen, B. Li, M. Yi, Numerical solution of space-time fractional convectiondiffusion equations with variable coefficients using Haar wavelets, Comput. Model. Eng. Sci. (CMES), 89 (2012), pp. 481-495. [51] M. Ng, Iterative Methods for Toeplitz Systems, Oxford University Press, New York, 2004. [52] F.-R. Lin, S.-W. Yang, X.-Q. Jin, Preconditioned iterative methods for fractional diffusion equation, J. Comput. Phys., 256 (2014), pp. 109-117. [53] S.-L. Lei, H.-W. Sun, A circulant preconditioner for fractional diffusion equations, J. Comput. Phys., 242 (2013), pp. 715-725. [54] I. Gohberg, A. Semencul, On the inversion of finite Toeplitz matrices and their continuous analogues, Matem. Issled., 7 (1972), pp. 201-223. (in Russian) [55] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd edition, SIAM, Philadelphia, USA, 2003. [56] A.A. Alikhanov, A new difference scheme for the time fractional diffusion equation, J. Comput. Phys., 280 (2015), pp. 424-438. [57] Z.-P. Hao, Z.-Z. Sun, W.-R. Cao, A fourth-order approximation of fractional derivatives with its applications, J. Comput. Phys., 281 (2015), pp. 787-805. [58] S. Vong, P. Lyu, X. Chen, S.-L. Lei, High order finite difference method for time-space fractional differential equations with Caputo and Riemann-Liouville derivatives, Numer. Algorithms, 72 (2016), pp. 195-210. [59] X.-M. Gu, T.-Z. Huang, H.-B. Li, L. Li, W.-H. Luo, On k-step CSCS-based polynomial preconditioners for Toeplitz linear systems with application to fractional diffusion equations, Appl. Math. Lett., 42 (2015), pp. 53-58. [60] ˚A. Bj¨orck, Direct Methods for Linear Systems, in Numerical Methods in Matrix Computations, Volume 59 of the series Texts in Applied Mathematics, Springer, Switzerland, 2014, pp. 1-209. |