25. Хромосомная теория наследственности. Эксперименты Моргана, доказывающие явления сцепленного наследования и нарушения сцепления. Понятие генетических карт хромосом. Хромосомная теория Т. Моргана: 1.Гены расположены в хромосоме в определенной линейной последовательности. 2.Каждый ген занимает отдельный локус. Аллельные гены расположены в одинаковых генах гомологичных хромосом. 3.Гены 1 хромосомы наследуются совместно, образуя группу сцепления. 4.Число групп сцепления равно гаплоидному набору хромосом каждого вида. 5.Сцепление генов может нарушаться в процессе кроссинговера. 6.Частота кроссинговера зависит от расстояния между генами, чем дальше гены друг от друга, тем чаще происходит кроссинговер. На вопрос как будут наследоваться признаки, гены которых находятся в одной хромосоме, дал американский генетик Т. Морган, проводивший в 1911 году опыты на плодовых мухах дрозофилах, различающихся по двум признакам: самка имела серое тело и короткие крылья, самец — черное тело и длинные крылья. В первом поколении все мухи оказались с серым телом и длинными крыльями. Следовательно, эти признаки доминировали. В анализирующем скрещивании гетерозиготного самца из первого поколения с самкой с рецессивными признаками среди потомков оказалось не 4 фенотипических класса, как следовало бы ожидать при дигибридном скрещивании, а два, в отношении 1:1. Это говорило о том, что исследуемые гены расположены в одной хромосоме и наследуются вместе, сцеплено, как одна альтернативная пара, не обнаруживая независимого наследования. Такой характер наследования получил название закона сцепления. Суть его заключается в том, что гены , находящиеся в одной хромосоме образуют группу сцепления и наследуются вместе по схеме моногибридного скрещивания. У каждого вида групп сцепления столько, сколько у него хромосом в гаплоидном наборе.
Дальнейшие опыты Моргана показали, что сцепление не всегда бывает абсо-лютным. Нарушения сцепленного наследования вызывается процессом кроссинговера в профазе первого деления мейоза, когда может произойти перекрёст некоторых генов, ранее находившихся в одной хромосоме, а затем оказались в разных гомологичных хромосомах и попали в разные гаметы. Генетические карты хромосом — это схема взаимного расположения и относительных расстояний между генами определенных хромосом, находящихся в одной группе сцепления. Впервые в 1913 — 1915 годах на возможность построения генетических карт хромосом указывают Т. Морган и его сотрудники. Они экспериментально показали, что основываясь на явлениях сцепления генов и кроссинговера можно построить генетические карты хромосом. Генетические карты человека используются в медицине при диагностике ряда тяжелых наследственных заболеваний человека. В исследованиях эволюционного процесса сравнивают генетические карты разных видов живых организмов.
| Номер 26
| 27. Генетика пола. Аутосомы и гетерохромосомы. Доказательство генетического определения признаков пола. Хромосомное определение пола у различных организмов и человека. Генетика пола — раздел генетики человека, изучающий роль механизмов наследственности и наследственной изменчивости в процессе определения и дифференциации пола. При этом имеет значение, как определенный набор хромосом, так и действиеряда генов, одни из которых расположены на половых хромосомах, другие — на аутосомах. Обычно выделяют несколько уровней половой дифференциации. Первый связан с наличием Y хромосомы, присутствие которой необходимо для дифференциации гонад по мужскому типу. У мужчин формируется 2 типа спермиев с Х хромосомой 23, X и с Y хромосомой 23, Y. В яйцеклетках набор хромосом в норме всегда 23, Х. Оплодотворение яйцеклетки спермием 23, Х приводит к развитию зародыша женского пола с набором хромосом 46, XX, оплодотворение же спермием 23, Y ведёт к возникновению зародыша мужского пола 46, XY. Аутосома — у живых организмов с хромосомным определением пола называют парные хромосомы, одинаковые у мужских и женских организмов. Гетерохромосома — половая хромосома. Важным доказательством в пользу наследственной детерминированности половой принадлежности организмов является наблюдаемое у большинства видов соотношение по полу 1:1.
Такое соотношение может быть обусловлено образованием двух видов гамет представителями одного пола гетерогаметный пол и одного вида гамет — особями другого пола гомогаметный пол. Это соответствует различиям в кариотипах организмов разных полов одного и того же вида, проявляющимся в половых хромосомах. У гомогаметного пола, имеющего одинаковые половые хромосомы XX, все гаметы несут гаплоидный набор аутосом плюс Х-хромосому. У гетерогаметного пола в кариотипе кроме аутосом содержатся две разные или только одна половая хромосома XY или ХО. Его представители образуют два вида гамет, различающиеся по гетерохромосомам: Х и Y или Х и 0. Хромосомный механизм определения половой принадлежности организмов обеспечивает равновероятность встречаемости представителей обоих полов. Это имеет большой биологический смысл, так как обусловливает максимальную вероятность встречи самки и самца, потомки получают более разнообразную наследственную информацию, поддерживается оптимальная численность особей в популяции.
Варианты хромосомного определения пола Женский пол Мужской пол Примеры Гомогаметный ХХ Гетерогаметный ХУ Млекопитающие, дрозофила Гомогаметный ХХ Гетерогаметный ХО Прямокрылые насекомые кузнечик Гетерогаметный ZW Гомогаметный ZZ Птицы, пресмыкающиеся, бабочки.
|
28. Первичные и вторичные половые признаки. Предопределение пола в процессе развития. Нарушение развития пола на примере синдрома Морриса. Наследование сцепленное с полом. Примеры. Первичные половые признаки: Совокупность особенностей, определяющих основные различия между самцом и самкой у животных, а также между мужчиной и женщиной. половые железы семенники и яичники половые протоки семяпроводы и яйцеводы дополнительные образования различные железы копулятивные органы Вторичные половые признаки: Признаки, характеризующие изменения в строении и функции различных органов, определяющих как половую зрелость, так и половую принадлежность. Зависят от первичных, развиваются под воздействием половых гормонов и появляются в период полового созревания. К ним относятся особенности развития костно-мышечной системы, пропорций тела, подкожно-жировой клетчатки и волосяного покрова, степень развития молочных желёз, тембр голоса, особенности поведения и др. К ним относятся: (особенности развития костно-мышечной системы,пропорций тела,подкожно жировой клетчатки,волосяного покрова,степень развития молочных желез,тембр голоса особенности поведения и др.) Синдром Морриса: Тестикулярная феминизация — мужской ложный гермафродитизм у пациентов с женскими наружными гениталиями; безволосая псевдоженщина. Заболевание было изучено в 1953 году Ф. Моррисом отсюда второе название синдрома тестикулярной феминизации — синдром Морриса, он же предложил использовать термин тестикулярная феминизация. Синдром тестикулярной феминизации, достаточно редко встречающееся заболевание, являющиеся наследственным. Сущность синдрома Морриса заключается в появлении у лиц генетически мужского пола женского фенотипа. Патогенез заболевания до сих пор полностью не изучен. Существует гипотеза, что ткани организма теряют чувствительность к собственным андрогенам организма, выделяемых тестикулами, и развитие организма идет по женскому генотипу. Признаки синдрома Морриса чаще всего проявляются в период полового созревания. При полной форме синдрома тестикулярной феминизации у пациентов с типичным женским внешним видом нет оволосения на лобке, отсутствуют менструации, грудные железы не развиты. Уровень в крови мужских половых гормонов в пределах нормы. При гинекологическом обследовании обнаруживаются женские наружные гениталии с недоразвитыми большими и особенно малыми половыми губами, узкое, укороченное влагалище, матка отсутствует, яички, в основном, располагаются у паховых каналов. По результатам большинства исследований пациентов с синдромом тестикулярной феминизации, таким людям лучше присваивать женский пол. В период полового созревания у больных развиваются вторичные половые признаки, психосексуальная ориентация, наружные гениталии также имеют выраженное женское строение. Кроме того, лечение мужскими андрогенами у больных с синдромом Морриса бесперспективно из-за отсутствия чувствительности к мужским половым гормонам. Наследование, сцепленное с полом. Половые хромосомы Х и Y содержат большое количество генов. Наследование определяемых ими признаков называют наследованием, сцепленным с полом, а локализацию генов в половых хромосомах называют сцеплением генов с полом. В Х- хромосоме имеетсяучасток, для которого в У — хромосоме нет гомолога. Поэтому у особей мужского пола признаки, определяемые генами этого участка хромосомы, проявляются даже в том случае, если они рецессивны. Эта особая форма сцепления позволяет объяснить наследование признаков, сцепленных с полом. При локализации генов в негомологичных участках или в Х- и У- хромосомах наблюдается полное сцепление с полом. К таким заболеваниям относятся: гемофилия, дальтонизм, мышечная дистрофия, потемнение эмали зубов, агаммглобулинемии и т.д. Х — хромосома закономерно переходит от одного пола к другому, при этом дочь наследует Х — хромосому отца, а сын — Х — хромосому матери. Если наоборот, то такое наследование называют крисс-кросс.
| 29. Нуклеиновые кислоты. Роль ДНК и РНК в реализации наследственной информации клетки. Доказательство наследственной роли ДНКопыты Гриффитса и Эвери. Нуклеиновые кислоты- высокомолекулярные органические соединения, биополимеры, образованные остатками нуклеотидов. Нуклеиновые кислоты ДНК и РНК присутствуют в клетках всех живых организмов и выполняют важнейшие функции по хранению, передаче и реализации наследственной информации. Полимерные формы нуклеиновых кислот называют полинуклеотидами. Цепочки из нуклеотидов соединяются через остаток фосфорной кислоты фосфодиэфирная связь. Поскольку в нуклеотидах существует только два типа гетероциклических молекул, рибоза и дезоксирибоза, то и имеется лишь два вида нуклеиновых кислот — дезоксирибонуклеиновая ДНК и рибонуклеиновая РНК. Мономерные формы также встречаются в клетках и играют важную роль в процессах передачи сигналов или запасании энергии. Наиболее известный мономер РНК — АТФ, аденозинтрифосфорная кислота, важнейший аккумулятор энергии в клетке. Нуклеиновые кислоты фрагментируются ферментами — нуклеазами. Роль ДНК и РНК в передаче наследственной информации. ДНК дезоксирибонуклеиновая кислота — это молекула, состоящая из двух спирально закрученных полинуклеотидных цепей рис. 14. ДНК образует правую спираль, диаметром примерно 2 нм, длиной в развернутом виде до 0,1 мм и молекулярной массой до 6ґ10-12 кДа. Структура ДНК была впервые определена Д.Уотсоном и Ф.Криком в 1953 г. Мономером ДНК является дезоксирибонуклеотид, состоящий из азотистого основания — аденина А, цитозина Ц, тимина Т или гуанина Г, — пентозы дезоксирибозы и фосфата. РНК рибонуклеиновая кислота — это молекула, состоящая из одной цепи нуклеотидов рис. 13. Рибонуклеотид состоит из одного из четырех азотистых оснований, но вместо тимина Т в РНК входит урацил У, а вместо дезоксирибозы — рибоза. Белки синтезируют все клетки, кроме безъядерных. Структура белка определяется ядерной ДНК. Информация о последовательности аминокислот в одной полипептидной цепи находится в участке ДНК, который называется ген. В ДНК заложена информация о первичной структуре белка. Код ДНК един для всех организмов. Каждой аминокислоте соответствует три нуклеотида, образующих триплет, или кодон. Такое кодирование избыточно: возможны 64 комбинации триплетов, тогда как аминокислот только 20. Существуют также управляющие триплеты, например, обозначающие начало и конец гена. Синтез белка начинается с транскрипции, т.е. синтеза иРНК по матрице ДНК. Процесс идет с помощью фермента полимеразы по принципу комплементарности и начинается с определенного участка ДНК. Синтезированная иРНК поступает в цитоплазму на рибосомы, где и идет синтез белка. тРНК имеет структуру, похожую на лист клевера, и обеспечивает перенос аминокислот к рибосомам. Каждая аминокислота прикрепляется к акцепторному участку соответствующей тРНК, расположенному на черешке листа. Противоположный конец тРНК называется антикодоном и несет информацию о триплете, соответствующем данной аминокислоте. Существует более 20 видов тРНК. Перенос информации с иРНК на белок во время его синтеза называется трансляцией. Собранные в полисомы рибосомы двигаются по иРНК; движение происходит последовательно, по триплетам. В месте контакта рибосомы с иРНК работает фермент, собирающий белок из аминокислот, доставляемых к рибосомам тРНК. При этом происходит сравнение кодона иРНК с антикодоном тРНК; если они комплементарны, фермент синтетаза сшивает аминокислоты, а рибосома продвигается вперед на один кодон. Синтез одной молекулы белка обычно идет 1-2 мин один шаг занимает 0,2 с. Доказательство роли ДНК: В 1928 г. Ф. Гриффитс впервые получил доказательства возможной передачи наследственных задатков от одной бактерии к другой. Ученый вводил мышам вирулентный капсульный и ави-рулентный бескапсульный штаммы пневмококков. При введении вирулентного штамма мыши заболевали пневмонией и погибали. При введении авирулентного штамма мыши оставались живыми. При введении вирулентного капсульного штамма, убитого нагреванием, мыши также не погибали. В следующем опыте он ввел смесь живой культуры авирулентного бескапсульного штамма со штаммом убитого нагреванием вирулентного капсульного и получил неожиданный результат — мыши заболели пневмонией и погибли. Из крови погибших животных были выделены бактерии, которые обладали вирулентностью и были способны образовать капсулу. Следовательно, живые бактерии авирулентного бескапсульного штамма трансформировались — приобрели свойства убитых болезнетворных бактерий. В дальнейшем другими учеными были подтверждены результаты опытов Ф. Гриффита в условиях пробирки.Основываясь на этих опытах,в1944 г.О. Эвери и его сотрудники Мак-Леод и Мак-Карти изучили роль разных веществ клетки вявлениях трансформации и получили убедительные доказательства того, что трансформирующим фактором является дезоксирибонуклеиновая кислота ДНК. Было установлено, что под действием дезоксирибонуклеазы — фермента, специфически разрушающего ДНК, активность трансформирующего фактора исчезла. В то же время рибонуклеаза и протео-литические ферменты не изменяли биологической активности трансформирующего фактора.
| 30. Процесс репликации. Полуконсервативный механизм репликации ДНК. Репликативная вилка. Репликон. Ферменты репликации. Этапы репликации. Репликация — процесс удвоения ДНК. Репликация у прокариот: Ведущий фермент репликации — ДНК-полимераза, которая способна наращивать полинуклеотидные цепи в направлении 5 — 3, т.о. только одна из цепей синтезируется непрерывноведущая. Синтез отстающей тоже в направлении 5-3, но короткими фрагментами фрагменты Оказаки. Синтез каждого из этих фрагментов начинается с РНК — затравки праймер. Для ведущей требуется 1 акт инициации, для отстающей — несколько. На стадии инициации РНК — праймаза синтезирует короткую РНК — затравку. После того, как будет синтезировать РНК — праймер, ДНК — полимераза продолжит наращивать цепь. После расплетения родительских цепей синтез дочерних осуществляется ДНК — полимеразой, использующей все АТФ. РНк — затравки не сохраняются и после реализации своей функции они удаляются за счет проявления 5!3 — эндонуклеазной активности. После удаления РНК — затравки, между 2 синтезированными участками ДНК остается разрыв, который ликвидируется ДНК — лигазой. Для того, чтобы раскрылась двойная спираль ДНК необходимы ДНК — геликазы, которые садятся на ДНК и раскручивают двойную спираль, разрывая водородные связи между основаниями. Белок второго типа
специфически связывается с одноцепочечной ДНК, не позволяя им сомкнуться. Белок 3 типа, топоизомераза, способствует ослаблению связей на сверхскрученных участках ДНК, раскручивая узлы в области родительской двойной спирали перед репликативной вилкой. После такого раскручивания, топоизомераза замыкает разорванные фосфодиэфирные связи и восстанавливает структуру родительской ДНК. Репликация у эукариот: Начинается в нескольких точкахARS. Синтез ДНК происходит в S — периоде интерфазы клеточного цикла. Там где происходит репликация называется репликационная вилка, которая движется последовательно вдоль ДНК от ее стартовой точки. По ходу процесса соседние репликоны соединяются. Репликоны формируют репликационный глазок. По ходу процесса соседние репликоны сливаются, образуя характерную У — образную конфигурацию. Когда репликация заканчивается, из 1 линейной родительской молекулы образуются 2 дочерние, каждая из которых представляет двойную спираль.
У эукариот 7 типов ДНК —полимераз, которые отвечают за репликацию и репарацию в ядре, митохондриях, пластидах.
| 31. Репарация генетического материала. Дорепликативная репарация световая. Темновая эксцизионнаярепарация. Примеры. Мутации, связанные с нарушением репарации. Мутон. Рекон. Репарация — особая функция клеток, заключающаяся в способности исправлять химические повреждения и разрывы в молекулах ДНК, повреждённой при нормальном биосинтезе ДНК в клетке или в результате воздействия физическими или химическими агентами. Осуществляется специальными ферментными системами клетки. Световая репарация. Начало изучению репарации было положено работами А. Келнера США, который в 1948 обнаружил явление фотореактивации ФР — уменьшение повреждения биологических объектов, вызываемого ультрафиолетовыми УФ лучами, при последующем воздействии ярким видимым светом световая репарация. В 1958 году была выделена фотолиаза, осуществляющая фотореактивацию. Механизм: под влияние УФ-лучей образуются димеры пиримидиновых оснований Тимина , цитозина, тимино — цитозиновые. Фотолиаза расщепляет вновь образующиеся связи между пиримидиновыми основаниями и восстанавливает структуру ДНК. Свет активирует фотолиазу, которая узнает димеры облученной ДНК, присоединяется к ним и разрывает возникающие связи.
Темновая репарация. Позднее при изучении генетического контроля чувствительности бактерий к УФ-свету и ионизирующим излучениям была обнаружена темновая Р. — свойство клеток ликвидировать повреждения в ДНК без участия видимого света. Механизм темновой Р. облученных УФ-светом бактериальных клеток был предсказан А. П. Говард-Фландерсом и экспериментально подтвержден в 1964 Ф. Ханавальтом и Д. Петиджоном США. Было показано, что у бактерий после облучения происходит вырезание поврежденных участков ДНК с измененными нуклеотидами и ресинтез ДНК в образовавшихся пробелах. Специфические ферменты узнают поврежденный участок ДНК и вырезают его. Различают дорепликативную Р., которая завершается до начала репликации хромосомы в поврежденной клетке, и пострепликативную Р., протекающую после завершения удвоения хромосомы и направленную на ликвидацию повреждений как в старых, так и в новых, дочерних молекулах ДНК. Считается, что у бактерий в пострепликативной Р. важная роль принадлежит процессу генетической рекомбинации. Мутон — обычно определяется как единица мутации. При возникновении спонтанной или индуцированной мутации в пределах структурного гена цистрона аминокислотный состав синтезируемого белка может измениться; иногда изменение в молекуле белка касается лишь одного аминокислотного остатка. Таким образом мутону, как единице мутации соответствует триплет ДНК, состоящий из трёх нуклеотидов то есть кодон. Однако, еслимутация связана с изменением не одного, а нескольких аминокислотных остатков в молекуле белка, то тогда мутону будет соответствовать не один, а несколько триплетов, входящих в состав цистрона ответственного за синтез данного белка. Рекон — наименьший неделимый элемент в нитевидной структуре ДНК, который может быть подвержен спонтанной или индуцированной мутации. Мутации подвергается участок ДНК, ответственный за синтез определённого белка — цистрон. Сам цистрон состоит из более мелких единиц мутации — мутонов соответствует кодону — триплету, кодирующему аминокислоты. Однако, мутация может затронуть и отдельный нуклеотид, являющийся элементарной единицей генетической информации. В терминах классической генетики эти единицы соответствуют реконам. Мутации: Считается, что нарушение механизмов репарации ДНК в целом приводит к различным патологическим процессам, в число которых входят канцерогенез, дефекты развития и старение. На сегодняшний день известен ряд наследственных заболеваний, причиной которых служат нарушение репарации ДНК. Дефекты системы эксцизионной репарации нуклеотидов приводят к возникновению пигментной ксеродермы , синдрома Кокейна и трихотиодистрофии . Наследственный неполипозный рак толстой кишки может вызываться мутациями некоторых генов системы репарации гетеродуплексов. Многие синдромы предрасположенности к онкологическим заболеваниям — ретинобластома , семейный аденоматозный полипоз ит.п. — связаны с нарушениями систем ответа на повреждение ДНК.
| 32. Репарация генетического материала. SOS — репарация. Пострепликативная репарация. Репарация генетическая — процесс устранения генетических повреждений и восстановления наследственного аппарата, протекающий в клетках живых организмов под действием специальных ферментов.
OSOрепарация При ней индуцирцется синтез белка, который присоединяется к к ДНК — полимеразному комплексу и делает возможным строить дочернюю ДНК напротив дефектных звеньев матричной цепи. В результате ДНК удвоена, с ошибкой, но это дает провести клеточное деление. Пострепликативная репарация Tип репарации, имеющей место в тех случаях, когда процесс эксцизионной репарации недостаточен для полного исправления повреждения: после репликации с образованием ДНК, содержащей поврежденные участки, образуются одноцепочечные бреши, заполняемые в процессе гомологичной рекомбинации при помощи белка RecA.[1] Пострепликативная репарация была открыта в клетках E.Coli, не способных выщеплять тиминовые димеры. Это единственный тип репарации, не имеющий этапа узнавания повреждения.
|
|
33. Характеристика наследственного материала в митотическом цикле клетки. Химический состав и структурная организация хроматина. Морфология хромосом. Хромосомы
типа ламповых щеток. Полимерные хромосомы. Характеристика наследственного материала в митотическом цикле клетки: Клеточный цикл эукариот состоит из двух периодов: Период клеточного роста, называемый интерфаза, во время которого идет синтез ДНК и белков и осуществляется подготовка к делению клетки. Периода клеточного деления, называемый фаза М от слова mitosis — митоз. Интерфаза состоит из нескольких периодов: G1-фазы от англ. gap — промежуток, или фазы начального роста, во время которой идет росто клеток, синтез белков, РНК, проиходит подготовка клеток к синтезу ДНК, повышается активность ферментов
S-фазы от англ. synthesis — синтез, во время которой идет репликация ДНК клеточного ядра, также происходит репликация молекул ДНК, синтез белков — гистонов. G2-фазы, происходит синтез РНК, накапливается энергия в молекулах АТФ, завершается удвоение центриолей, митохондрий, пластид, синтезируются белки, заканчивается рост клетки. Митоз: 1. Профаза Ранняя профаза. В клетке плазматическая мембрана на фотографии имеет красный цвет исчезает ядерная оболочка, нити микротрубочек зеленые начинают формировать митотический аппарат веретено деления, хроматин комплекс ДНК и белков-гистонов, на фотографии — голубые пятна начинает конденсироваться и, спирализуясь, превращаться в хромосомы. Поздняя профаза. Продолжается формирование хромосом из хроматина, на полюсах бывшего ядра формируются центры митотического аппарата, между которыми протягиваются микротрубочки нитей веретена деления.
2. Метафаза
Хромосомы располагаются по экватору бывшего ядра, прикрепляясь своими центромерами первичными перетяжками к нитям митотического аппарата. Начинается формирование метафазной пластинки.
Заканчивается формирование метафазной пластинки. Именно на этой стадии клеточного деления, блокировав дальнейшее расхождение хромосом при помощи определенных алкалоидов например, колхицина, изучают кариотип набор хромосом, присущий данному организму или виду. 3. Анафаза Хромосомы разрываются в месте соединения по центромере и хроматиды начинают движение к противоположным полюсам клетки: от каждой хромосомы одна хроматида движется к одному полюсу, другая — к другому. Хроматиды теперь можно назвать сестринскими хромосомами, т.к. они теперь действительно обретают самостоятельность, становятся самостоятельными хромосомами, которые попадут в разные клетки. Заканчивается расхождение хроматид к полюсам клетки. Именно на этом этапе клеточного цикла происходит равномерное распределение наследственной информации материнской клетки между дочерними клетками.
4. Телофаза Хромосомы концентрируются на противоположных полюсах клетки. Начинается десприализация хромосом, постепенно начинает формироваться ядерная оболочка. Хроматин Структурная организация
• эухроматин и гетерохроматин • половой хроматин Нуклеосомиая нить. Этот уровень организации хроматина обеспечивается четырьмя видами нуклеосомных гистонов: Н2А, Н2В, НЗ, Н4. Они образуют напоминающие по форме шайбу белковые тела — коры, состоящие из восьми молекул. Молекула ДНК комплектируется с белковыми корами, спирально накручиваясь на них. При этом в контакте с каждым кором оказывается участок ДНК, состоящий из 146 пар нуклеотидов п.н.. Свободные от контакта с белковыми телами участки ДНК называют связующими или линкерными. Отрезок молекулы ДНК длиной около 200 п. н. вместе с белковым кором составляет нуклеосому. Благодаря такой организации в основе структуры хроматина лежит нить, представляющая собой цепочку повторяющихся единиц — нуклеосом.
Вдоль нуклеосомной нити, напоминающей цепочку бус, имеются области ДНК, свободные от белковых тел. Эти области, расположенные с интервалами в несколько тысяч пар нуклеотидов, играют важную роль в дальнейшей упаковке хроматина, так как содержат нуклеотидные последовательности, специфически узнаваемые различными негистоновыми белками. В результате нуклеосомной организации хроматина двойная спираль ДНК диаметром 2 нм приобретает диаметр 10-11 нм. Хроматиновая фибрилла.
Дальнейшая компактизация нуклеосомной нити обеспечивается пистоном HI, который, соединяясь с линкерной ДНК и двумя соседними белковыми телами, сближает их друг с другом. В результате образуется более компактная структура, построенная, возможно, по типу соленоида. Такая Хроматиновая фибрилла, называемая также элементарной, имеет диаметр 20-30 нм. Интерфазная хромонема.
Следующий уровень структурной организации генетического материала обусловлен укладкой хроматиновой фибриллы в петли. В их образовании, по-видимому, принимают участие негистоновые белки, которые способны узнавать специфические нуклеотидные последовательности вненуклеосомной ДНК, отдаленные друг от друга на расстояние в несколько тысяч пар нуклеотидов. Эти белки сближают указанные участки с образованием петель из расположенных между ними фрагментов хроматиновой фибриллы. В результате такой упаковки хроматиновая фибрилла диаметром 20-30 нм преобразуется в структуру диаметром 100-200 нм, называемую интерфазной хромонемой. Отдельные участки интерфазной хромонемы подвергаются дальнейшей компактизации, образуя структурные блоки, объединяющие соседние петли с одинаковой организацией. Они выявляются в интерфазном ядре в виде глыбок хроматина. Морфология хромосом: Первичная перетяжка Хромосомная перетяжка X. п., в которой локализуется центромера и которая делит хромосому на плечи. Вторичные перетяжки Морфологический признак, позволяющий идентифицировать отдельные хромосомы в наборе. От первичной перетяжки отличаются отсутствием заметного угла между сегментами хромосомы. Вторичные перетяжки бывают короткими и длинными и локализуются в разных точках по длине хромосомы. У человека это 9, 13, 14, 15, 21 и 22 хромосомы. Типы строения хромосом Различают четыре типа строения хромосом: телоцентрические палочковидные хромосомы с центромерой, расположенной на проксимальном конце
акроцентрические палочковидные хромосомы с очень коротким, почти незаметным вторым плечом
субметацентрические с плечами неравной длины, напоминающие по форме букву L
метацентрические V-образные хромосомы, обладающие плечами равной длины. Тип хромосом является постоянным для каждой гомологичной хромосомы и может быть постоянным у всех представителей одного вида или рода. Полимерные хромосомы: Хромосомы ламповые щетки: Хромосомы типа ламповых щеток, впервые обнаруженные В. Флеммингом в 1882 году, — это специальная форма хромосом, которую они приобретают в растущих ооцитах женских половых клетках большинства животных, за исключением млекопитающих. В растущих ооцитах всех животных, за исключением млекопитающих, во время протяженной стадии диплотены профазы мейоза I активная транскрипция многих последовательностей ДНК приводит к преобразованию хромосом в хромосомы, по форме напоминающие щетки для чистки стёкол керосиновых ламп хромосомы типа ламповых щёток. Они представляют собой сильно деконденсированные полубиваленты, состоящие из двух сестринских хроматид. Хромосомы типа ламповых щеток можно наблюдать с помощью световой микроскопии, при этом видно, что они организованы в виде серии хромомеров содержат конденсированный хроматин и исходящих из них парных латеральных петель содержат транскрипционно активный хроматин. Наиболее подробно описана организация хромосом типа ламповых щеток хвостатых и бесхвостых амфибий, доместицированных видов птиц и некоторых видов насекомых. Хромосомы типа ламповых щёток амфибий и птиц могут быть изолированы из ядра ооцита с помощью микрохирургических манипуляций. Хромосомы типа ламповых щёток производят огромное количество РНК, синтезируемой на латеральных петлях. Каждая латеральная петля всегда содержит одну и ту же последовательность ДНК и остаётся в вытянутом состоянии на протяжении всего роста ооцита, вплоть до начала конденсации хромосом. Латеральная петля может содержать одну или несколько транскрипционных единиц с поляризованным РНП-матриксом, покрывающим ДНП-ось петли. Вместе с тем, большая часть ДНК остается в конденсированном состоянии и организована в хромомеры в осях хромосом типа ламповых щёток. Благодаря гигантским размерам и выраженной хромомерно-петлевой организации,
хромосомы типа ламповых щёток на протяжении многих десятилетий служат удобной моделью для изучения организации хромосом, работы генетического аппарата и регуляции экспрессии генов во время профазы мейоза I. Кроме того, хромосомы этого типа широко используются для картирования последовательностей ДНК с высокой степенью разрешения, изучения феномена транскрипции некодирующих белки тандемных повторов ДНК, анализа распределения хиазм и др.
| 34. Кариотип и идиограмма хромосом человека. Строение и типы хромосом. Характеристика гаплоидного и диплоидного типа хромосом. Методы анализа фотокариограммы. Группы хромосом в кариотипе человека. Кариотип и идиограмма хромосом человека: Кариотип — совокупность совокупность хромосом соматической клетки, характеризующая организм данного вида. Хромосомы подразделяют на аутосомы и гетерохромосомы. Идиограмма — систематизированный кариотип, в котором хромосомы располагаются по мере уменьшения их величины. Строение и типы хромосом: Хромосомы — структуры клетки, хранящие и передающие наследственную информацию. Хромосома состоит из ДНК и белка. Комплекс белков, связанных с ДНК, образует хроматин. Белки играют важную роль в упаковке молекул ДНК в ядре. Различают четыре типа строения хромосом: -телоцентрические палочковидные хромосомы с центромерой, расположенной на проксимальном конце
-акроцентрические палочковидные хромосомы с очень коротким, почти незаметным вторым плечом
-субметацентрические с плечами неравной длины, напоминающие по форме букву L
-метацентрические V-образные хромосомы, обладающие плечами равной длины. Тип хромосом является постоянным для каждой гомологичной хромосомы и может быть постоянным у всех представителей одного вида или рода. Характеристики гаплоидного и диплоидного набора хромосом: Диплоидный набор хромосом организма называют кариотипом. Современные методы исследования позволяют определить каждую хромосому в кариотипе. Для этого учитывают распределение видимых под микроскопом светлых и темных полос чередование AT и ГЦ-пар в хромосомах, обработанных специальными красителями. Поперечной исчерченностью обладают хромосомы представителей разных видов. У родственных видов, например у человека и шимпанзе, очень сходный характер чередования полос в хромосомах. Гаплоидный набор хромосом син.: гаметический набор хромосом, одинарный набор хромосом — совокупность хромосом, присущая зрелой половой клетке, в которой из каждой пары характерных для данного биологического вида хромосом присутствует только одна; у человека Г. н. х. представлен 22 аутосомами и одной половой хромосомой. Методы анализа фотокардиограмм: хз Группы хромосом в кариотипе человека: В группу А входят 3 пары наиболее крупныхметацентрических хромосом 1-3. В группу В 4-5 включены 2 пары субметацентрических хромосом.
Группа С 6-12 объединяет 7 пар аутосом среднего размера с субмедианно расположенной центромерой. Кроме того, половая хромосома X неотличима от аутосом этой группы и при раскладке стандартно окрашенных хромосом включается в состав группы С 6-Х-12.
В группе D 13-15 — 3 пары акроцентрических хромосом среднего размера.
В группе Е 16- 18 — одна пара хромосом 16 с медианной локализацией центромеры, пары 17-18 отличаются меньшей общей длиной и размерами коротких плеч.
В последних двух группах находятся самые мелкие хромосомы: метацентри- ческие — группа F 19-20 и акроцентрические — группа G 21-22. Половая хромосома Y-акроцентрик, подобный хромосомам 21 и 22, но практически всегда может быть дифференцирована.
| 35. Ген. Классификация. Свойства гена. Ген. Классфификация генов. Ген от гр. генос — род, происхождение представляет собой участок молекулы ДНК, определяющий наследование того или иного признака. Так как молекулы ДНК в процессе деления скручиваются в хромосомы, то можно сказать, что ген — это участок хромосомы. Поскольку в соматических клетках организмов содержится двойной диплоидный набор гомологичных хромосом, по одному от каждой родительской особи, следовательно, и генов, определяющих развитие каждого признака в клетке, по два. Они располагаются в строго определенных участках гомологичных хромосом — локусах. Гены, ответственные за развитие какого-то признака и лежащие в одних и тех же локусах гомологичных хромосом, называются аллельными генами, или аллелью. Все гаметы у особи чистой линии АА или чистосортной одинаковы, то есть содержат ген А. Эти особи называются гомозиготными по данному признаку от гр. гомос — равный. Особи с генами Аа образуют два вида гамет А и а в соотношении 1:1. Такие особи называют гетерозиготными от греч. гетерос — различный. Преобладающий вариант признака из двух возможных называют доминантным от лат. domine — господин, а подавляемый — рецессивным от лат. recessivus — отступление. Например, при рассмотрении цвета семян гороха Г.Мендель установил, что их желтый цвет доминирует над зеленым. Дискретность. Это нахождение гена в строго определённом месте хромосомы локусе. Стабильность. Гены не меняются. Ошибки исправляются репарационными механизмами. Лабильность. Гены способны к мутациям. Плейотропия. Влияние одного гена на несколько признаков организма. Полиаллелизм. Это множественный аллелизм — присутствие в генофонде вида одновременно различных аллелей гена. Специфичность. Каждый ген отвечает за развитие определённого признака или признаков.
|
|
|
| |