Понятия возбудимости и раздражимости. Раздражители определение, их виды, характеристика. Мембранный потенциал покоя параметры, механизм формирования. Понятия возбудимости и раздражимости Возбудимость
Скачать 2.86 Mb.
|
28. 4. Принципы исследования прихода и расхода энергии организмом.Методы исследования энергетических затрат организма. Их два - прямая калориметрия и непрямая калориметрия. Для изучения энергетических затрат методом прямой калориметрии надо любыми возможными способами непосредственно измерить энергию, которую организм, в соответствии с законом сохранения энергии, преобразует в тепло и выделяет о внешнюю следу. Такое исследование возможно в специальных камерах. В них создаются все условия для жизнеобеспечения человека или животного в течение суток и для измерения всего тепла, выделенного организмом за это время. Прямая калориметрия основана на непосредственном учете в биокалориметрах количества тепла, выделенного организмом. Рис. 51. Биокалориметр Этуотера — Бенедикта для человека (схема). Объяснения в тексте Одновременно в биокалориметр подается О2 и поглощается избыток СО2 и водяных паров. Схема биокалориметра приведена на рис. 52. Продуцируемое организмом человека тепло измеряют с помощью термометров (1,2) по нагреванию воды, протекающей по трубкам в камере. Количество протекающей воды измеряют в баке (3). Через окно (4) подают пищу и удаляют экскременты. С помощью насоса (5) воздух извлекают из камеры и прогоняют через баки с серной кислотой (6 и 8) — для поглощения воды и с натронной известью (7) — для поглощения СО2. О2 подают в камеру из баллона (10) через газовые часы (11). Давление воздуха в камере поддерживают на постоянном уровне с помощью сосуда с резиновой мембраной (9). Прямая калориметрия в клинике не используется, а применяется в некоторых научных лабораториях. Непрямая калориметрия. Методы прямой калориметрии очень громоздки и сложны, поэтому в клинике применяются косвенные методы измерения энергозатрат. Учитывая, что в основе теплообразования в организме лежат окислительные процессы, при которых потребляется О2 и образуется СО2, можно использовать косвенное, непрямое, определение теплообразования в организме по его газообмену — учету количества потребленного О2 и выделенного СО2 с последующим расчетом теплопродукции организма. Наиболее распространен способ Дугласа — Холдейна, при котором в течение 10—15 мин собирают выдыхаемый воздух в мешок из воздухонепроницаемой ткани (мешок Дугласа), укрепляемый на спине обследуемого (рис. 53). Он дышит через загубник, взятый в рот, или резиновую маску, надетую на лицо. В загубнике и маске имеются клапаны, устроенные так, что обследуемый свободно вдыхает атмосферный воздух, а выдыхает воздух в мешок Дугласа. Когда мешок наполнен, измеряют объем выдохнутого воздуха, в котором определяют количество О2 и СО2. Рис. 52. Определение легочной вентиляции с помощью мешка Дугласа. Известно, что в результате окисления 1 г белков и углеводов освобождается 4,1 ккал тепла, а при окислении 1г жиров - 9,3 ккал. Зная количество принятых за определенный срок с пищей белков, жиров и углеводов, можно было бы рассчитать, сколько за это время поступило в организм энергии (а значить и выделилось, в соответствии с законом сохранения энергии). Этот метод учета общей величины энергозатрат организма называется методом пищевых рационов. Он не требует никакой аппаратуры, производится лишь учет количества съеденной пищи и по таблицам подчитывается ее калорийность. Однако этот метод не совсем точен, ибо постоянно может быть отложение воспринятых веществ в депо, или, наоборот, присоединение к принятой пище ранее депонированных продуктов. Поэтому метод пищевых рационов применяется чаще всего лишь для контроля за общей калорийностью и энергетической ценностью пищи. Более точным методом при определении энергетических затрат является метод исследования газообмена, который тоже относится к непрямой калориметрии. Основан метод газообмена на том, что между количеством освобожденного к организмом тепла, выделением углекислого газа и поглощением кислорода существуют точные соотношения. Зная состав исследуемого вещества, нетрудно рассчитать, сколько кислорода необходимо для его полного окисления до углекислого газа и воды. С учетом этих количеств для каждого вещества определяется калорический эквивалент кислорода (КЭК), т.е. количество тепла, освобождающееся при полном окислении его в условиях поглощения 1л кислорода. КЭК для углеводов равен 5 ккал, для жиров - 4,7 ккал, для белков - около 4,85 ккал. Это значит, что при окислении углеводов при потреблении каждого литра кислорода выделятся 5 ккал тепла. Знание величины КЭК позволяет точно устанавливать величину энергетических затрат путем определения количества кислорода, которое за данный промежуток времени потреблено организмом. Однако, чтобы это было возможно, необходимо знать еще, какие вещества в данный момент времени окисляются в организме. Это возможно определить по т.н. дыхательному коэффициенту, который равен отношению объемов выделенного углекислого газа и поглощенного кислорода. Дело в том, что в зависимости от химического состава окисляющегося вещества соотношение выделенного углекислого газа и потребленного кислорода различно. Это отношение и носит название дыхательного коэффициента (ДК). При окислении углеводов он равен 1, так как: C6H12O6 +6O2 =6CO2 +6H2O Расчеты показывают, что при окислении жиров дыхательный коэффициент (ДК) равен 0,7, а при его окислении белка в организме ДК равен 0,8. При смешанной пище у человека ДК обычно равен 0,85—0,95. Определенному дыхательному коэффициенту соответствует определенный калорический эквивалент кислорода. Поэтому, зная величины выделенного и поглощенного газа, легко рассчитать ДК, а зная его - применить нужный КЭК. Однако, поскольку люди питаются в основном смешанной пищей, то путем многих статистических исследований показано, что в среднем при общепринятом европейском рационе ДК равен 0,9 без особо больших колебаний. Если принять ДК за 0,9, тогда не надо определять количество поглощенного углекислого газа, достаточно знать величину поглощенного кислорода. Это делается легко с помощью метода Крога в приборах метаболиметрах или спирометрах. Относительное постоянство дыхательного коэффициента (0,85—0,90) у людей при обычном питании в условиях покоя позволяет производить достаточно точное определение энергетического обмена у человека в покое, вычисляя только количество потребленного кислорода и беря его калорический эквивалент при усредненном дыхательном коэффициенте. Количество потребленного организмом кислорода определяют при помощи различных спирографов. Определив количество поглощенного кислорода, и приняв усредненный дыхательный коэффициент равным 0,9, можно рассчитать энергообразование в организме; калорический эквивалент 1 л кислорода при данном дыхательном коэффициенте равен 4,9 ккал. Способ неполного газового анализа благодаря своей простоте получил широкое распространение. | |
| Терморегуляция: значение, виды терморегуляции, физические и физиологические механизмы теплопродукции и теплоотдачи. Понятие изотермии. Характеристика функциональной системы, поддерживающей постоянство температуры внутренней среды организма и ее схема. Температура тела человека и высших животных поддерживается на относительно постоянном уровне, несмотря на колебания температуры окружающей среды. Это постоянство температуры тела носит название изотермии. Изотермия свойственна только так называемым гомойотермным, или теплокровным, животным. Изотермия отсутствует у пойкилотермных, или холоднокровных, животных, температура тела которых переменна и мало отличается от температуры окружающей среды. Все химические реакции в организме зависят от температуры. У пойкилотермных интенсивность энергетических процессов возрастает пропорционально внешней температуре. У гомойотермных это правило замаскировано регуляторным термогенезом и проявляется лишь при блокаде терморегуляции (наркоз, повреждение нервной системы). Наркоз совместно со снижением температуры тела может вызвать заметное снижение степени потребления кислорода и задержку процессов тканевого разрушения - это используется в хирургии. Теплопродукция и размеры тела. Температура тела у большинства теплокровных лежит в диапазоне 36-39оС, несмотря на значительные различия в массе и размерах. В противоположность этому интенсивность метаболизма (М) находится в степенной зависимости от массы тела (m): M = 0,75 km. Коэффициент k примерно одинаков и для мыши и для слона. Этот закон зависимости обмена веществ от массы тела отражает тенденцию к установлению соответствия между теплопродукцией и интенсивностью теплоотдачи в среду. Потери тепла на единицу массы тем больше, чем больше соотношение между поверхностью и объемом тела, причем это соотношение уменьшается с увеличением размера тела. Кроме того, у мелких животных изолирующий слой тела более тонкий. Если расставить по убывающей интенсивности обменных процессов некоторых животных в ряд, то получиться следующее: мышь, кролик, собака, человек, слон. Температура тела человека. Тепло, вырабатываемое в организме, отдается в окружающее пространство поверхностью тела. Поэтому То поверхности меньше То ядра тела, а То дистальной части конечностей меньше, чем проксимальной. Например, когда легко одетый взрослый человек находится в помещении с То воздуха 20о С, в глубоких мышцах его бедра температура равна 35о, в икроножной мышце - 33о, на стопе - 27о, в rectum -37о С. Колебания То тела при изменениях внешней температуры выражены больше вблизи поверхности тела и в концевых частях конечностей. Внутренняя температура тела сама по себе не является постоянной, ни в пространственном, ни во временном отношении. Различия составляют 0,2-1,2о C. Даже в мозгу То центра и коры отличается на 1о. Как правило, наиболее высокая То отмечается в прямой кишке (а не в печени, как это было принято считать раньше!). В связи с этим невозможно выразить То тела одним числом. Для практики достаточно найти определенный участок, То в котором может рассматриваться как репрезентативная для всего внутреннего слоя. Для клинических измерений нужен легкодоступный участок с незначительными пространственными колебаниями температуры. В этом смысле предпочтительнее использовать ректальную температуру. Специальный ректальный термометр вводится в этом случае на 10-15 см. В норме она составляет 37о С. Область «ядра» сильно уменьшается при низкой внешней температуре и, наоборот, увеличивается при относительно высокой температуре окружающей среды. Поэтому справедливо говорить о том, что изотермия присуща главным образом внутренним органам и головному мозгу. Поверхность же тела и конечности, температура которых может изменяться в зависимости от температуры окружающей среды, являются в определенной мере пойкилотермными. При этом различные участки поверхности кожи имеют неодинаковую температуру. Обычно относительно выше температура кожи туловища и головы (33—34°С). Температура конечностей ниже, причем она наиболее низкая в дистальных отделах. Из сказанного следует, что понятие «постоянная температура тела» является условным. Лучше всего среднюю температуру организма как целого характеризует температура крови в полостях сердца и в наиболее крупных сосудах, так как циркулирующая в них кровь нагревается в активных тканях (тем самым охлаждая их) и охлаждается в коже (одновременно согревая ее). Оральная температура (подъязычная) также используется в клинике. Обычно она на 0,2-0,5о меньше ректальной. Подмышечная температура (чаще используется России) - равна 36,5-36,6оС. Может служить показателем внутренней температуры тела, поскольку, когда рука плотно прижата к грудной клетке, температурный градиент смещается так, что граница ядра тела доходит до подмышечной впадины. Однако при этом надо ждать довольно долго (10 мин), пока в этих участках не накопится достаточно тепла. Если поверхностные ткани были первоначально холодными в условиях низкой окружающей температуры и в них произошло сужение сосудов, то для установления соответствующего равновесия в этих тканях должно пройти около получаса. Термогенез. Температура органов и тканей, как и всего организма в целом, зависит от интенсивности образования тепла и величины теплопотерь. Теплообразование происходит вследствие непрерывно совершающихся экзотермических реакций. Эти реакции протекают во всех органах и тканях, но неодинаково интенсивно и носят название химической терморегуляции. В тканях и органах, производящих активную работу, — в мышечной ткани, печени, почках выделяется большее количество тепла, чем в менее активных — соединительной ткани, костях, хрящах. В том случае, когда для поддержания температуры тела необходимо дополнительное тепло, оно может быть выработано следующими способами: 1. Произвольной активностью мышечного аппарата. 2. Непроизвольной тонической или ритмической (дрожь) активностью. Эти два пути носят название сократительного термогенеза. 3. Ускорение обменных процессов, не связанных с сокращением мышц (несократительный термогенез). Химическая терморегуляция имеет важное значение для поддержания постоянства температуры тела, как в нормальных условиях, так и при изменении температуры окружающей среды. У человека усиление теплообразования вследствие увеличения интенсивности обмена веществ отмечается, в частности, тогда, когда температура окружающей среды становится ниже оптимальной температуры, или зоны комфорта. Для человека в обычной легкой одежде эта зона находится в пределах 18—20°С, а для обнаженного равна 28 °С. Наиболее интенсивное теплообразование в организме происходит в мышцах. Даже если человек лежит неподвижно, но с напряженной мускулатурой, интенсивность окислительных процессов, а вместе с тем и теплообразование повышаются на 10%. Небольшая двигательная активность ведет к увеличению теплообразования на 50—80 %, а тяжелая мышечная работа — на 400— 500%. В условиях холода теплообразование в мышцах увеличивается, даже если человек находится в неподвижном состоянии. Это обусловлено тем, что охлаждение поверхности тела, действуя на рецепторы, воспринимающие холодовое раздражение, рефлекторно возбуждает беспорядочные непроизвольные сокращения мышц, проявляющиеся в виде дрожи (озноб). При этом обменные процессы организма значительно усиливаются, увеличивается потребление кислорода и углеводов мышечной тканью, что и влечет за собой повышение теплообразования. Даже произвольная имитация дрожи увеличивает теплообразование на 200 %. Если в организм введены миорелаксанты — вещества, нарушающие передачу нервных импульсов с нерва на мышцу и тем самым устраняющие рефлекторную мышечную дрожь, при повышении температуры окружающей среды гораздо быстрее наступает понижение температуры тела. Особое место занимает так называемый бурый жир, количество которого значительно у новорожденных. Бурый оттенок жира придается более значительным числом окончаний симпатических нервных волокон и большим числом митохондрий. За счет высокой скорости окисления жирных кислот в бурой жировой ткани процесс теплообразования идет гораздо быстрее, чем в обычной, и почти без синтеза макроэргов. Именно этот механизм срочного теплообразования получил название «несократительный термогенез». В химической терморегуляции значительную роль играют также печень и почки. Температура крови печеночной вены выше температуры крови печеночной артерии, что указывает на интенсивное теплообразование в этом органе. При охлаждении тела теплопродукция в печени возрастает. У взрослого человека дрожь является наиболее значительным непроизвольным проявлением механизмов термогенеза. У новорожденного ребенка большее значение имеет несократительный термогенез (сгорание в "метаболическом котле" бурого жира). Скопления бурого жира с большим числом митохондрий находится между лопатками, в подмышечной впадине. Его температура при охлаждении организма увеличивается, усиливается кровоток. За счет повышения термогенеза температура тела удерживается на постоянном уровне. Теплоотдача. Потеря тепла органами и тканями зависит в большой степени от их месторасположения: поверхностно расположенные органы, например кожа, скелетные мышцы, отдают больше тепла и охлаждаются сильнее, чем внутренние органы, более защищенные от охлаждения. 1. Внутренний поток тепла.Менее половины всего тепла, выработанного внутри тела, распространяется к поверхности за счет проведения через ткани. Большая часть идет путем конвекции в кровоток. Кровь имеет высокую теплоемкость. Кровоток конечностей организован по принципу поворотно-противоточного механизма, что облегчает теплообмен между сосудами. 2. Наружный поток тепла. Отдача тепла наружу осуществляется путем проведения, конвекции, излучения и испарения. Перенос тепла проведением - когда тело контактирует с плотным субстратом. Когда контакт тела происходит с воздухом - конвекция, излучение или испарение. Если кожа теплее воздуха, прилегающий слой его нагревается и уходит вверх, замещаясь более холодным воздухом. Форсированная конвекция (обдув) значительно усиливает интенсивность теплоотдачи. Излучение происходит в виде инфракрасного излучения. Около 20% теплоотдачи тела человека в нейтральных температурных условиях осуществляется за счет испарения воды с кожи и слизистых дыхательных путей. Характер отдачи тепла телом изменяется в зависимости от интенсивности обмена веществ. При увеличении теплообразования в результате мышечной работы возрастает значение теплоотдачи, осуществляемой с помощью испарения воды. В значительной степени препятствует теплоотдаче слой подкожной основы (жировой клетчатки) вследствие малой теплопроводности жира. Температура кожи, а, следовательно, интенсивность теплоизлучения и теплопроведения могут изменяться в результате перераспределения крови в сосудах и при изменении объема циркулирующей крови. На холоде кровеносные сосуды кожи, главным образом артериолы, сужаются: большее количество крови поступает в сосуды брюшной полости, и тем самым ограничивается теплоотдача. Поверхностные слои кожи, получая меньше теплой крови, излучают меньше тепла — теплоотдача уменьшается. При сильном охлаждении кожи, кроме того, происходит открытие артериовенозных анастомозов, что уменьшает количество крови, поступающей в капилляры, и тем самым препятствует теплоотдаче. Перераспределение крови, происходящее на холоде, — уменьшение количества крови, циркулирующей через поверхностные сосуды, и увеличение количества крови, проходящей через сосуды внутренних органов, способствует сохранению тепла во внутренних органах. Эти факты служат основанием для утверждения, что регулируемым параметром является именно температура внутренних органов («ядра»), которая поддерживается на постоянном уровне. При повышении температуры окружающей среды сосуды кожи расширяются, количество циркулирующей в них крови увеличивается. Возрастает также объем циркулирующей крови во всем организме вследствие перехода воды из тканей в сосуды, а также потому, что селезенка и другие кровяные депо выбрасывают в общий кровоток дополнительное количество крови. Увеличение количества крови, циркулирующей через сосуды поверхности тела, способствует теплоотдаче с помощью радиации и конвекции. Для сохранения постоянства температуры тела человека при высокой температуре окружающей среды основное значение имеет испарение пота с поверхности кожи. Значение потоотделения для поддержания постоянства температуры тела видно из следующего подсчета: в летние месяцы температура окружающего воздуха в средних широтах нередко равна температуре тела человека. Это означает, что организм человека, живущего в этих условиях, не может отдавать образующееся в нем самом тепло путем радиации и конвекции. Единственным путем отдачи тепла остается испарение воды. Приняв, что среднее теплообразование в сутки равно 2400— 2800 ккал, и зная, что на испарение 1 г воды с поверхности тела расходуется 0,58 ккал, получаем, что для поддержания температуры тела человека на постоянном уровне в таких условиях необходимо испарение 4,5 л воды. Особенно интенсивно потоотделение происходит при высокой окружающей температуре во время мышечной работы, когда возрастает теплообразование в самом организме. При очень тяжелой работе выделение пота у рабочих горячих цехов может составить 12 л за день. Испарение воды зависит от относительной влажности воздуха. В насыщенном водяными парами воздухе вода испаряться не может. Поэтому при высокой влажности атмосферного воздуха высокая температура переносится тяжелее, чем при низкой влажности. В насыщенном водяными парами воздухе (например, в бане) пот выделяется в большом количества, но не испаряется и стекает с кожи. Такое потоотделение не способствует отдаче тепла: только та часть пота, которая испаряется с поверхности кожи, имеет значение для теплоотдачи (эта часть пота составляет эффективное потоотделение). Так как некоторая часть воды испаряется легкими в виде паров, насыщающих выдыхаемый воздух, дыхание также участвует в поддержании температуры тела на постоянном уровне. При высокой окружающей температуре дыхательный центр рефлекторно возбуждается, при низкой — угнетается, дыхание становится менее глубоким. Влияние одежды: с точки зрения физиологии она является формой теплового сопротивления или изоляции. Одежда уменьшает теплоотдачу. Потере тепла препятствует тот слой неподвижного воздуха, который находится между одеждой и кожей, так как воздух — плохой проводник тепла. Теплоизолирующие свойства одежды тем выше, чем мельче ячеистость ее структуры, содержащая воздух. Этим объясняются хорошие теплоизолирующие свойства шерстяной и меховой одежды. Температура воздуха под одеждой достигает 30 °С. Наоборот, обнаженное тело теряет тепло, так как воздух на его поверхности все время сменяется. Поэтому температура кожи обнаженных частей тела намного ниже, чем одетых. Плохо переносится также непроницаемая для воздуха одежда (резиновая и т.п.), препятствующая испарению пота: слой воздуха между одеждой и телом быстро насыщается парами, и дальнейшее испарение пота прекращается. Таким образом, постоянство температуры тела поддерживается путем совместного действия, с одной стороны, механизмов, регулирующих интенсивность обмена веществ и зависящее от него теплообразование (химическая регуляция тепла), а с другой — механизмов, регулирующих теплоотдачу (физическая регуляция тепла). Периодические колебания внутренней температуры. В течение дня минимальная температура у человека наблюдается в предутренние часы, а максимальная - днем. Амплитуда колебаний составляет 1оС. Суточная (циркадная) ритмика основана на энергетическом механизме (биологические часы), который обычно синхронизирован с вращением земли. В условиях путешествия, связанного с пересечением земных меридианов, требуется 1-2 недели, для того чтобы температурный режим пришел в соответствие с условиями нового местного времени. На циркадные ритмы накладываются другие (menses у женщин и т.д.). Температура в условиях физической нагрузки может повышаться на 2оС или больше в зависимости от интенсивности нагрузки. При этом средняя кожная температура снижается, так как благодаря работе мышц выделяется пот, который охлаждает кожу. Ректальная температура при работе может достигать 41о (у марафонцев). Кровеносные сосуды кожи могут реагировать непосредственно на изменения Т - т.н. холодовое расширение, что обусловлено локальной термочувствительностью мускулатуры сосудов. Холодовое расширение сосудов наблюдается обычно в виде следующей реакции. Когда человек попадает на сильный холод, сначала у него возникает максимальное сужение сосудов, которое проявляется в бледности и ощущении холода в открытых областях. Однако через некоторое время кровь внезапно устремляется в сосуды охлажденных частей тела, что сопровождается покраснением и потеплением кожи. Если воздействие холода продолжается, события периодически повторяются. Считается, что холодовое расширение сосудов является защитным механизмом, предотвращающим обморожение, особенно у людей, адаптированных к холоду. Вместе с тем этот механизм может ускорить летальный исход общего переохлаждения у тех, кто вынужден плавать в холодной воде в течение продолжительного времени. Факторы окружающей среды и температурный комфорт. Влияние температуры среды на организм зависит, по крайней мере, от четырех физических факторов: температуры воздуха, влажности, температуры излучения и скорости движения воздуха (ветер). Этими факторами определяется, ощущает ли человек "температурный комфорт" или ему жарко или холодно. Условие комфорта состоит том, что организм не нуждается в работе механизмов терморегуляции: ему не требуется ни дрожи, ни выделения пота, а кровоток в периферических областях сохраняет среднюю скорость. Это т.н. термонейтральная зона. Указанные четыре фактора в определенной мере взаимозаменяемы. Значение температуры комфорта для легко одетого (рубашка, трусы, длинные хлопковые брюки) сидячего человека равно 25-26оС при влажности 50% и равенстве температуры воздуха и стен. Для обнаженного - 28о С. В условиях температурного комфорта средняя температура кожи = 34o С. По мере выполнения физической работы температура комфорта падает. Для легкой кабинетной работы она равна 22oС. Когда роль окружающей среды играет вода, то так как она обладает большей теплопроводностью и теплоемкостью, чем воздух, то от тела путем конвекции отводится больше тепла. Если вода находится в движении, то тепло отнимается так быстро, что при окружающей температуре +10оС даже сильная физическая работа не позволяет поддерживать тепловое равновесие, и возникает гипотермия. Если тело находится в полном покое, то для достижения температурного комфорта То воды должна быть 35-36о. Нижний предел термонейтральной зоны зависит от толщины жировой ткани. |