Главная страница

Пособие по биологии. Пособие по биологии для поступающих в вузы Авторы Пименов А. В., Гончаров О. В


Скачать 34.42 Mb.
НазваниеПособие по биологии для поступающих в вузы Авторы Пименов А. В., Гончаров О. В
АнкорПособие по биологии.doc
Дата16.01.2018
Размер34.42 Mb.
Формат файлаdoc
Имя файлаПособие по биологии.doc
ТипПособие
#14200
страница36 из 53
1   ...   32   33   34   35   36   37   38   39   ...   53

35.5.2. Углеводы


Углеводы, или сахариды, — органические вещества, в состав которых входит углерод, кислород, водород. Углеводы составляют около 1% массы сухого вещества в животных клетках, а в клетках печени и мышц — до 5%. Наиболее богаты углеводами растительные клетки (до 90% сухой массы). Химический состав углеводов характеризуется их общей формулой Сm(Н2О)n, где m≥n. Количество атомов водорода в молекулах углеводов, как правило, в два раза больше атомов кислорода (то есть как в молекуле воды). Отсюда и название — углеводы.

Различают две группы углеводов:

  • простые сахара;

  • сложные сахара, образованные остатками простых сахаров.

Простые углеводы

Простые углеводы называют моносахаридами, так как они не гидролизуются. Общая формула простых сахаров — (СН2О)n, где n ≥ 3.В зависимости от числа атомов углерода в молекуле моносахаридов различают: триозы (3С), тетрозы (4С), пентозы (5С), гексозы (6С), гептозы (7С). В природе наиболее широко распространены пентозы и гексозы.

Свойства моносахаридов


  • Низкая молекулярная масса;

  • сладкий вкус;

  • легко растворяются в воде;

  • кристаллизуются;

  • относятся к редуцирующим (восстанавливающим) сахарам.

Важнейшие моносахариды: из пентоз — дезоксирибоза и рибоза, входящие в состав ДНК, РНК и АТФ; из гексоз наиболее распространены глюкоза, фруктоза и галактоза (общая формула С6Н12О6).

Молекулы моносахаридов могут иметь вид прямолинейных цепочек или циклических структур (рис. 263). Для пентоз и гексоз — наиболее характерна именно циклическая структура, линейные молекулы встречаются очень редко. Молекулы дисахаридов и полисахаридов также образованы

ц

Рис. 263. Линейная и циклическая структура молекулы глюкозы.
иклическими формами моносахаридов.

Моносахариды могут быть представлены в форме - и -изомеров (рис. 264). Гидроксильная группа при первом атоме углерода может располагаться как под плоскостью цикла (-изомер), так и над ней (-изомер). - и -изомеры играют важную роль, например, в образовании крахмала и целлюлозы.



Рис. 264. Изомеры глюкозы:
1 — -изомер; 2 — -изомер.




Наиболее важные моносахариды


Рибоза и
дезоксирибоза



М

Рис. 265. Пентозы:
1 — рибоза; 2 — дезоксирибоза.
оносахариды группы пентоз (рис. 265). Входят в состав мономеров нуклеиновых кислот, некоторых коферментов, АМФ, АДФ, АТФ. Дезоксирибоза (С5Н10О4) отличается от рибозы (С5Н10О5) тем, что при втором атоме углерода имеет атом водорода, а не гидроксильную группу как у рибозы.

Глюкоза (виноградный сахар)
Одна из наиболее распространенных гексоз. В свободном виде встречается и у растений, и у животных. Глюкоза — это первичный источник энергии для клеток. Входит в состав важнейших ди- и полисахаридов. Обязательный компонент крови. Снижение ее количества приводит к немедленному нарушению жизнедеятельности нервных и мышечных клеток. Находясь в клетках, регулирует осмотическое давление.

Фруктоза
Широко распространена в природе. В свободном виде встречается в плодах. Особенно много ее в меде, фруктах. Значительно слаще глюкозы и других сахаров. Входит в состав олиго- и полисахаридов, участвует в поддержании тургора растительных клеток. Поскольку метаболизм фруктозы не регулируется инсулином, имеет важное значение при питании больных сахарным диабетом.

Галактоза
Пространственный изомер глюкозы. Входит в состав олигосахаридов, растительных и бактериальных полисахаридов. Вместе с глюкозой образуют важнейший дисахарид молока — лактозу, называемую молочным сахаром. Легко превращается в глюкозу.

Сложные углеводы

Сложными называют углеводы, молекулы которых при гидролизе распадаются с образованием простых углеводов. Их состав выражается общей формулой Сm(H2O)n, где m>n.

Среди сложных углеводов различают олигосахариды и полисахариды.

Олигосахариды
Олигосахаридами называют сахароподобные сложные углеводы, содержащие от 2 до 10 моносахаридных остатков.

В зависимости от количества остатков моносахаридов, входящих в молекулы олигосахаридов, различают дисахариды, трисахариды, тетрасахариды и т.д. Наиболее широко распространены в природе дисахариды.

    Свойства олигосахаридов




  • Сравнительно невысокая (несколько сотен) молекулярная масса;

  • хорошая растворимость в воде;

  • легко кристаллизуются;

  • обладают, как правило, сладким вкусом;

  • могут быть как редуцирующими, так и нередуцирующими.

Дисахариды
Дисахариды — олигосахариды, молекулы которых образованы двумя остатками моносахаридов. Встречаются в природе в свободном виде или в составе полисахаридов.

Образование дисахаридов
Дисахариды образуются в результате конденсации двух моносахаридов (чаще всего гексоз) (рис. 266). Связь, возникающую между двумя моносахаридами, называют гликозидной. Обычно она образуется между 1-м и 4-м




Рис. 266. Образование дисахарида.

углеродными атомами соседних моносахаридных единиц (1,4-гликозидная связь).

Сахароза (тростниковый сахар)


Состоит из остатков глюкозы и фруктозы. Легко растворима в воде. Широко распространена в растениях. Углеводы, образовавшиеся в процессе фотосинтеза, в виде сахарозы оттекают из листьев. Сахароза легко превращается в крахмал и гликоген. Играет огромную роль в питании животных и человека. В основном сахарозу получают из сахарной свеклы и сахарного тростника.

Лактоза (молочный сахар)
Образована остатками глюкозы и галактозы. Плохо растворима в воде. Входит в состав молока. Является источником энергии для детенышей млекопитающих. В свободном виде обнаружена у некоторых растений. Используется в микробиологической промышленности для приготовления питательных сред.

Мальтоза (солодовый сахар)
Состоит из двух остатков глюкозы. Хорошо растворима в воде. Легко гидролизуется ферментом мальтаза с образованием двух молекул глюкозы.

Полисахариды
Высокомолекулярные органические вещества, биополимеры, мономерами которых являются простые углеводы. Чаще всего мономером полисахаридов является глюкоза, иногда манноза, галактоза и другие сахара. Как правило, в состав полисахаридов входит несколько сотен мономерных единиц.
Свойства полисахаридов

  • Большая молекулярная масса (обычно сотни тысяч);

  • не дают ясно оформленных кристаллов;

  • либо нерастворимы в воде, либо образуют растворы, напоминающие по свойствам коллоидные;

  • сладкий вкус не характерен;

  • нередуцирующие углеводы.

Образование полисахаридов
Полисахариды образуются в результате реакции поликонденсации (рис. 267). Если в молекуле полисахарида присутствуют только 1,4-гликозидные связи, то образуется линейный, неразветвленный полимер (целлюлоза). Если присутствуют как 1,4, так и 1,6-гликозидные связи, полимер будет разветвленным (гликоген). 1,6-гликозидная связь образуется между остатками моносахаридов, входящих в состав разных линейных цепей.


Рис.267. Образование разветвленного полисахарида.






Крахмал
Наиболее важные полисахариды
Основной резервный углевод растений. Общая формула (С6Н10О5)n, где n- количество остатков -глюкозы. Нерастворим в холодной воде. В горячей воде образует раствор, по свойствам напоминающий коллоидный (крахмальный клейстер). Молекула крахмала примерно на 20% состоит из амилозы и на 80% из амилопектина. Линейные цепи амилозы состоят из нескольких тысяч остатков глюкозы и способны спирально свертываться, принимая более компактную форму. Амилопектин интенсивно ветвится, и за счет этого обеспечивается его компактность.

Гликоген
Основной резервный углевод животных и человека. Обнаружен также в грибах, дрожжах и зернах кукурузы. Содержится главным образом в печени (20%) и мышцах (4%). Служит источником глюкозы.

Молекула сходна с молекулой амилопектина, но сильнее ветвится. Гликоген сравнительно хорошо растворим в горячей воде.

Целлюлоза (клетчатка)
Основной структурный углевод клеточных стенок растений. Один из самых распространенных природных полимеров: в ней аккумулировано около 50% всего углерода биосферы. Целлюлоза нерастворима в воде, лишь набухает в ней. Является линейным полимером -глюкозы. В отличие от крахмала, остатки глюкозы соединены в молекуле целлюлозы -гликозидными связями, что исключает ее расщепление пищеварительными соками человека, так как у человека отсутствуют ферменты, способные разрывать -гликозидные связи целлюлозы.

Энергетическая

Функции углеводов



Одна из основных функций углеводов. Углеводы — основные источники энергии в животном организме. Обеспечивают до 67% суточного энергопотребления (не менее 50%). При расщеплении 1 г углевода выделяется 17,6 кДж.

Запасающая
Запасающая функция выражается в накоплении крахмала клетками растений и гликогена клетками животных, которые играют роль источников глюкозы, легко высвобождая ее по мере необходимости.

Опорно-строительная
Углеводы входят в состав клеточных мембран и клеточных стенок (целлюлоза входит в состав клеточной стенки растений, из хитина образован панцирь членистоногих, различные олиго- и полисахариды образуют клеточную стенку бактерий). Продукты промежуточного обмена углеводов используются для синтеза липидов, аминокислот. Соединяясь с липидами и белками, образуют гликолипиды и гликопротеины. Рибоза и дезоксирибоза входят в состав мономеров нуклеотидов.

Рецепторная
Олигосахаридные фрагменты гликопротеинов и гликолипидов клеточных стенок выполняют рецепторную функцию, воспринимая сигналы, поступающие из внешней среды.

Защитная
Слизи, выделяемые различными железами, богаты углеводами и их производными (например, гликопротеинами). Они предохраняют пищевод, кишечник, желудок, бронхи от механических повреждений, препятствуют проникновению в организм бактерий и вирусов. Гепарин предотвращает свертывание крови в организме животных и человека.

35.5.3. Липиды


Липиды — сборная группа органических соединений, не имеющих единой химической характеристики. Их объединяет то, что все они являются производными высших жирных кислот, нерастворимы в воде, но хорошо растворимы в органических растворителях (эфире, хлороформе, бензине).

Липиды содержатся во всех клетках животных и растений. Содержание липидов в клетках составляет 5-15% сухой массы, но в жировой ткани может иногда достигать 90%.

В зависимости от особенности строения молекул различают:

  • Простые липиды, представляющие собой двухкомпонентные вещества, являющиеся сложными эфирами высших жирных кислот и какого-либо спирта.

  • Сложные липиды, имеющие многокомпонентные молекулы.

Простые липиды

Жиры
Жиры широко распространены в природе. Они входят в состав организма человека, животных, растений, микробов, некоторых вирусов. Содержание жиров в биологических объектах, тканях и органах может достигать 90%.

Жирыэто сложные эфиры высших жирных кислот и трехатомного спирта — глицерина. В химии эту группу органических соединений принято называть триглицеридами. Триглицериды — самые распространенные в природе липиды.

Жирные кислоты
В составе триглицеридов обнаружено более 500 жирных кислот, молекулы которых имеют сходное строение. Как и аминокислоты, жирные кислоты имеют одинаковую для всех кислот группировку — карбоксильную группу (–СООН) и радикал, которым они отличаются друг от друга. Поэтому общая формула жирных кислот имеет вид R-CООН. Карбоксильная группа образует головку жирной кислоты. Она полярна, поэтому гидрофильна. Радикал представляет собой углеводородный хвост, отличающийся у разных жирных кислот количеством группировок –СН2. Он неполярен, поэтому гидрофобен. Большая часть жирных кислот содержит в "хвосте" четное число атомов углерода, от 14 до 22 (чаще всего 16 или 18). Кроме того, углеводородный хвост может содержать различное количество двойных связей. По наличию или отсутствию двойных связей в углеводородном хвосте различают:

  • насыщенные жирные кислоты, не содержащие в углеводородном хвосте двойных связей;

  • ненасыщенные жирные кислоты, имеющие двойные связи между атомами углерода (-СН=СН-).

Образование молекулы триглицерида
При образовании молекулы триглицерида каждая из трех гидроксильных (-ОН) групп глицерина вступает в реакцию

конденсации с жирной кислотой (рис. 268). В ходе реакции возникают три сложноэфирные связи, поэтому образовавшееся соединение называют сложным эфиром. Обычно в реакцию вступают все три гидроксильные группы глицерина, поэтому продукт реакции называется триглицеридом.



Рис. 268. Образование молекулы триглицерида.



Свойства триглицеридов
Физические свойства зависят от состава их молекул. Если в триглицеридах преобладают насыщенные жирные кислоты, то они твердые (жиры), если ненасыщенные — жидкие (масла).

Плотность жиров ниже, чем у воды, поэтому в воде они всплывают и находятся на поверхности.

Воски
Воски — группа простых липидов, представляющих собой сложные эфиры высших жирных кислот и высших высокомолекулярных спиртов.

Воски встречаются как в животном, так и в растительном царстве, где выполняют главным образом защитные функции. У растений они, например, покрывают тонким слоем листья, стебли и плоды, предохраняя их от смачивания водой и проникновения микроорганизмов. От качества воскового покрытия зависят сроки хранения фруктов. Под покровом пчелиного воска хранится мед и развиваются личинки. Другие виды животного воска (ланолин) предохраняют волосы и кожу от действия воды.

Сложные липиды

Фосфолипиды
Фосфолипиды — сложные эфиры многоатомных спиртов с высшими жирными кислотами, содержа-

щ

Рис. 269. Фосфолипид.
ие остаток фосфорной кислоты (рис. 269). Иногда с ней могут быть связаны добавочные группировки (азотистые основания, аминокислоты, глицерин и др.).

Как правило, в молекуле фосфолипидов имеется два остатка высших жирных и
один остаток фосфорной кислоты.

Фосфолипиды найдены и в животных, и в растительных организмах. Особенно много их в нервной ткани человека и позвоночных животных, много фосфолипидов в семенах растений, сердце и печени животных, яйцах птиц.

Фосфолипиды присутствуют во всех клетках живых существ, участвуя главным образом в формировании клеточных мембран.

Гликолипиды
Гликолипиды — это углеводные производные липидов. В состав их молекул наряду с многоатомным спиртом и высшими жирными кислотами входят также углеводы (обычно глюкоза или галактоза). Они локализованы преимущественно на наружной поверхности плазматической мембраны, где их углеводные компоненты входят в число других углеводов клеточной поверхности.

Липоиды
Липоиды — жироподобные вещества. К ним относятся стероиды (широко распространенный в животных тканях холестерин, эстрадиол и тестостерон — соответственно женский и мужской половые гормоны), терпены (эфирные масла, от которых зависит запах растений), гиббереллины (ростовые вещества растений), некоторые пигменты (хлорофилл, билирубин), часть витаминов (А, D, E, K ) и др.

Функции липидов

Энергетическая
Основная функция липидов — энергетическая. Калорийность липидов выше, чем у углеводов. В ходе расщепления 1 г жиров до СО2 и Н2О освобождается 38,9 кДж. Единственной пищей новорожденных млекопитающих является молоко, энергоемкость которого определяется главным образом содержанием в нем жира.

Структурная
Липиды принимают участие в образовании клеточных мембран. В составе мембран находятся фосфолипиды, гликолипиды, липопротеины.

Запасающая
Жиры являются запасным веществом животных и растений. Это особенно важно для животных, впадающих в холодное время года в спячку или совершающих длительные переходы через местность, где нет источников питания (верблюды в пустыне). Семена многих растений содержат жир, необходимый для обеспечения энергией развивающееся растение.

Терморегуляторная
Жиры являются хорошими термоизоляторами вследствие плохой теплопроводимости. Они откладываются под кожей, образуя у некоторых животных толстые прослойки. Например, у китов слой подкожного жира достигает толщины 1 м. Это позволяет теплокровному животному обитать в холодной воде. Жировая ткань многих млекопитающих играет роль терморегулятора.

Защитно-механическая
Скапливаясь в подкожном слое, жиры не только предотвращают потери тепла, но и защищают организм от механических воздействий. Жировые капсулы внутренних органов, жировая прослойка брюшной полости обеспечивают фиксацию анатомического положения внутренних органов и защищают их от сотрясения, травмирования при внешних воздействиях.

Каталитическая
Эта функция связана с жирорастворимыми витаминами (А, D, E, K). Сами по себе витамины не обладают каталитической активностью. Но они являются кофакторами ферментов, без них ферменты не могут выполнять свои функции.

Источник метаболический воды
Одним из продуктов окисления жиров является вода. Эта метаболическая вода очень важна для обитателей пустынь. Так, жир, которым заполнен горб верблюда, служит в первую очередь не источником энергии, а источником воды (при окислении 1 кг жира выделяется 1,1 кг воды).

Повышение плавучести
Запасы жира повышают плавучесть водных животных.

35.5.4. Нуклеиновые кислоты


Нуклеиновые кислоты впервые были выделены Ф.Мишером в 1869 г. из ядер клеток гноя, а сам термин предложен А.Косселем в 1889 г.

К нуклеиновым кислотам относят высокополимерные соединения, распадающиеся при гидролизе на пуриновые и пиримидиновые основания, пентозу и фосфорную кислоту. Нуклеиновые кислоты содержат С, Н, О большое количество Р (8-10%) и N (15-16%).

Значение нуклеиновых кислот для живых организмов заключается в обеспечении хранения, реализации и передачи наследственной информации.

Нуклеотиды

Нуклеотид — мономер нуклеиновых кислот. Молекула нуклеотида состоит из трех частей: азотистого основания, пятиуглеродного сахара (пентозы) и фосфорной кислоты (рис. 270).

Состав нуклеотидов

Азотистые основания
Азотистые основания являются главной частью нуклеотида. Они имеют циклическую структуру, в состав которой наряду с атомами углерода входят атомы других элементов, в частности азота. За присутствие в этих соединениях атомов азота они и получили название азотистых, а поскольку они обладают щелочными свойствами — оснований.

Азотистые основания нуклеиновых кислот относятся к классам пиримидинов и пуринов.

Пиримидиновые основания являются производными гетероциклического соединения — пиримидина, имеющего в составе своей молекулы одно кольцо. К наиболее распространенным пиримидиновым основаниям относятся урацил, тимин, цитозин.

Пуриновые основания являются производными бициклического гетероцикла — пурина, имеющего два кольца: шестичленное и пятичленное.

К пуриновым основаниям относятся аденин и гуанин.

Во всех клетках — прокариотических и эукариотических — в состав нуклеиновых кислот входят эти пять основных азотистых оснований.

Пятиуглеродный сахар
Помимо азотистых оснований в образовании нуклеотидов принимают участие углеводный компонент, который представлен двумя сходными моносахаридами: рибозой или дезоксирибозой, относящихся к пентозам.

Фосфорная кислота
Третьим компонентом нуклеотидов является остаток фосфорной кислоты — фосфат. Именно наличие фосфата придает нуклеиновым кислотам свойства кислот.




Рис. 270. Компоненты нуклеотидов:
1 — пятиуглеродный сахар; 2 — азотистые основания; 3 — фосфорная кислота.



Образование нуклеотидов
Как отмечалось ранее, нуклеотиды являются мономерами нуклеиновых кислот. Биосинтез нуклеотидов является первым этапом биосинтеза нуклеиновых кислот. Они их непосредственные предшественники.

Образование нуклеотида происходит в два этапа. На первом этапе в результате реакции конденсации образуется нуклеозид — комплекс азотистого основания с сахаром. На втором этапе нуклеозид подвергается фосфорилированию. При этом между остатком сахара и фосфорной кислотой возникает фосфоэфирная связь. Таким образом, нуклеотид представляет собой нуклеозид, соединенный с остатком фосфорной кислоты (рис. 271).




Рис. 271. Образование нуклеотида.



Названия нуклеотидов отличаются от названий соответствующих оснований. И те, и другие принято обозначать заглавными буквами:

Таблица 6.
Виды нуклеотидов:


Азотистое основание

Нуклеотид

Обозначение

Аденин

Адениловый

А

Гуанин

Гуаниловый

Г или G

Цитозин

Цитидиловый

Ц или С

Тимин

Тимидиловый

Т

Урацил

Уридиловый

У или U

Функции нуклеотидов



Нуклеотиды являются мономерами, из которых построены полимерные цепи нуклеиновых кислот, они входят в состав важных коферментов (НАД, НАДФ, ФАД, КоА).

Образование ди- и полинуклеотидов
Динуклеотид представляет собой соединение, состоящее из остатков двух нуклеотидов. При конденсации двух нуклеотидов между 3'-углеродом остатка сахара одного нуклеотида и остатком фосфорной кислоты другого возникает сложноэфирная связь. Таким образом, остатки сахаров двух

н

Рис.272. Образование динуклеотида
уклеотидов оказываются связаны фосфодиэфирными мостиком (рис. 272).

Возникновение фосфодиэфирных мостиков между 3' и 5'-углеродами остатков сахаров может происходить многократно. В результате образуются неразветвленные полинуклеотидные цепи. Один конец полинуклеотидной цепи заканчивается 5'-углеродом (его называют 5'-концом), другой –3'-углеродом (3'-концом).

Полинуклеотиды
В зависимости от углеводного компонента нуклеотидов, различают два класса нуклеиновых кислот:

  • рибонуклеиновые кислоты (РНК), содержащие рибозу;

  • дезоксирибонуклеиновые кислоты (ДНК), содержащие дезоксирибозу.

Нуклеотиды ДНК называют дезоксирибонуклеотидами, РНК — рибонуклеотидами.

Дезоксирибонуклеиновая кислота

Молекулы ДНК являются полимерами, мономерами которых являются дезоксирибонуклеотиды, образованные:

  • остатком пятиуглеродного сахара — дезоксирибозы;

  • остатком одного из азотистых оснований:

пуриновых — аденина, гуанина;

пиримидиновых — тимина, цитозина;

  • остатком фосфорной кислоты.

Структура молекулы ДНК
ДНК представляет собой двойную спираль. Ее молекула образована двумя полинуклеотидными цепями, спирально закрученными друг около друга, и вместе вокруг воображаемой оси (рис. 273). Цепи ДНК антипараллельны (разнонаправлены), то есть против 3'-конца одной цепи находится 5'-конец другой. На периферию молекулы обращен сахаро-фосфатный остов, образованный чередующимися остатками дезоксирибозы и фосфатными группами. Внутрь молекулы обращены азотистые основания.

Диаметр двойной спирали ДНК — 2 нм, шаг общей спирали, на который приходится 10 пар нуклеотидов — 3,4 нм. Длина молекулы — до нескольких десятков и даже сотен микрометров. Молекулярный вес составляет десятки и сотни миллионов (для двойной спирали). В ядре клетки человека общая длина ДНК около 2м.



Рис. 273. Схематичное изображение развернутых цепей ДНК.


Рис.274. Трехмерная модель молекулы ДНК.


Трехмерная модель пространственного строения молекулы ДНК в виде двойной спирали была предложена в 1953 г. американским биологом Дж.Уотсоном и английским физиком Ф.Криком (рис. 274). За свои исследования они были удостоены Нобелевской премии.

Полинуклеотидные цепи в молекуле ДНК удерживаются друг около друга благодаря возникновению водородных связей между азотистыми основаниями. Спаривание нуклеотидов не случайно, в его основе лежит принцип комплементарного взаимодействия пар оснований: против аденина одной цепи всегда располагается тимин на другой цепи, а против гуанина одной цепи — всегда цитозин другой, то есть аденин комплементарен тимину, а гуанин — цитозину (рис. 275). Комплементарностью называют способность нуклеотидов к избирательному соединению друг с другом.



Рис. 275. Спаривание азотистых оснований.


Комплементарность обеспечивается:

  • взаимодополнением пространственных конфигураций молекул азотистых оснований;

  • количеством водородных связей, возникающих между азотистыми основаниями (три водородные связи между гуанином и цитозином и две водородные связи между аденином и тимином).

Комплементарность пуриновых и пиримидиновых азотистых оснований обеспечивает одинаковое по всей длине двойной спирали расстояние между цепями.

Э.Чаргафф, обследовав огромное количество образцов тканей и органов различных организмов, выявил следующую закономерность: в любом фрагменте ДНК содержание остатков гуанина всегда точно соответствует содержанию цитозина, а аденина — тимину. Это положение получило название "правила Чаргаффа":

А + Г

А = Т; Г = Ц или ——— = 1

Ц + Т
Дж.Уотсон и Ф.Крик воспользовались этим правилом при построении модели молекулы ДНК.

Последовательность нуклеотидов одной цепи определяет последовательность нуклеотидов другой, поэтому две цепи молекулы ДНК комплементарны друг другу.

Самоудвоение молекулы ДНК
Одним из уникальных свойств молекулы ДНК является ее способность к самоудвоению — воспроизведению точных копий исходной молекулы. Благодаря этой способности молекулы ДНК, осуществляется передача наследственной информации от материнской клетки дочерним во время деления. Процесс самоудвоения молекулы ДНК называют репликацией.

Репликация — сложный процесс, идущий с участием ферментов (ДНК-полимераз) (рис. 276). Репликация осуществляется полуконсервативным способом, то есть под действием ферментов молекула ДНК раскручивается и около каждой цепи, выступающей в роли матрицы, по принципу комплементарности достраивается новая цепь. Таким образом, в каждой дочерней ДНК одна цепь является материнской, а вторая — вновь синтезированной. Раскручивание молекулы происходит на небольшом отрезке (несколько десятков нуклеотидов), называемом репликативной вилкой. После окончания синтеза дочерних цепей ДНК на данном участке и соединения их с материнскими раскручивается новый отрезок, и цикл репликации повторяется. Таким образом, репликативная вилка перемещается вдоль молекулы, пока не дойдет до точки окончания синтеза.

В

Рис. 276. Репликация ДНК.
материнской ДНК цепи антипараллельны. ДНК-полимеразы способны двигаться в одном направлении — от 3'-конца к 5'-концу, строя дочернюю цепь антипараллельно — от 5' к 3'-концу. Поэтому ДНК-полимераза передвигается в направлении 3'→5' по одной цепи (3'-5'), синтезируя дочернюю. Эта цепь называется лидирующей. Другая ДНК-полимераза движется по другой цепи (5'-3') в обратную сторону (тоже в направлении 3'→5'), синтезируя вторую дочернюю цепь фрагментами (их называют фрагменты Оказаки), которые после завершения репликации сшиваются в единую цепь. Эта цепь называется отстающей. Таким образом, на цепи 3'-5' репликация идет непрерывно, а на цепи 5'-3' — прерывисто.

Во время репликации энергия молекул АТФ не расходуется, так как для синтеза дочерних цепей при репликации используются не дезоксирибонуклеотиды (содержат один остаток фосфорной кислоты), а дезоксирибонуклеозидтрифосфаты (содержат три остатка фосфорной кислоты). При включении дезоксирибонуклеозидтрифосфатов в полинуклеотидную цепь два концевых остатка отщепляются, и освободившаяся энергия используется на образование сложноэфирной связи между нуклеотидами.

35.5.5. Рибонуклеиновые кислоты


Молекулы РНК являются полимерами, мономерами которых являются рибонуклеотиды, образованные:

остатком пятиуглеродного сахара — рибозы;

остатком одного из азотистых оснований:

пуриновых — аденина, гуанина;

пиримидиновых — урацил, цитозина;

остатком фосфорной кислоты.

Структурная организация РНК
Молекула РНК представляет собой неразветвленный полинуклеотид, имеющий третичную структуру. В отличие от ДНК, она образована не двумя, а одной полинуклеотидной цепочкой. Однако ее нуклеотиды также способны образовывать водородные связи между собой, но это внутри–, а не межцепочечные соединения комплементарных нуклеотидов. Цепи РНК значительно короче цепей ДНК.

Информация о структуре молекулы РНК заложена в молекулах ДНК. Синтез молекул РНК происходит на матрице ДНК с участием ферментов РНК-полимераз и называется транскрипцией. Последовательность нуклеотидов в РНК комплементарна кодирующей цепи ДНК и идентична, за исключением замены тимина на урацил, некодирующей цепи.

Если содержание ДНК в клетке относительно постоянно, то содержание РНК сильно колеблется. Наибольшее количество РНК в клетках наблюдается во время синтеза белка.

Существует три основных класса рибонуклеиновых кислот:

  • информационная (матричная) РНК — иРНК;

  • транспортная РНК — тРНК;

  • рибосомальная РНК — рРНК.

Информационная РНК
Наиболее разнообразный по размерам и стабильности класс. Все они являются переносчиками генетической информации из ядра в цитоплазму. Они служат матрицей для синтеза молекулы белка, т.к. определяют аминокислотную последовательность первичной структуры белковой молекулы.

На долю иРНК приходится до 5% от общего содержания РНК в клетке.

Транспортная РНК
Молекулы транспортных РНК содержат обычно 75-86 нуклеотидов. Молекулярная масса молекул тРНК  25000. Молекулы тРНК играют роль посредников в биосинтезе белка — они доставляют аминокислоты к месту синтеза белка, в рибосомы. В к


Рис. 277. Строение тРНК:
1 — акцепторное плечо; 2 — антикодоновое плечо (а — петля; б — "стебель").
летке содержится более 30 видов тРНК.

Каждый вид тРНК имеет характерную только для него последовательность нуклеотидов. Однако у всех молекул имеется несколько внутримолекулярных комплементарных участков, благодаря наличию которых все тРНК имеют третичную структуру, напоминающую по форме лист клевера (рис. 277).

Молекулы всех тРНК имеют четыре основных плеча:

  • акцепторное;

  • антикодоновое;

  • два боковых.

Каждое плечо состоит из "стебля", образованного комплементарными парами оснований, и петель из неспаренных оснований.

Акцепторное плечо через 3-гидроксильную группу аденозильного остатка связывает тРНК с аминокислотой. Антикодоновое плечо содержит триплет нуклеотидов (антикодон), комплементарный кодону иРНК.

Рибосомная РНК
На долю рибосомальной РНК (рРНК) приходится 80-85% от общего содержания РНК в клетке. Рибосомная РНК состоит из 3-5 тыс. нуклеотидов. В комплексе с рибосомными белками рРНК образует рибосомы — органеллы, на которых происходит синтез белка.

Основное значение рРНК состоит в том, что она обеспечивает первоначальное связывание иРНК и рибосомы и формирует активный центр рибосомы, в котором происходит образование пептидных связей между аминокислотами в процессе синтеза полипептидной цепи.

35.5.6.Аденозинтрифосфорная кислота (АТФ)


Аденозинтрифосфорная кислота (АТФ) — универсальный переносчик и основной аккумулятор энергии в живых клетках. АТФ содержится во всех клетках растений и животных. Количество АТФ колеблется и в среднем составляет 0,04% (на сырую массу клетки). Наибольшее количество АТФ (0,2-0,5%) содержится в скелетных мышцах.

АТФ представляет собой нуклеотид, образованный остатками азотистого основания (аденина), сахара (рибозы) и фосфорной кислоты (рис. 278). В отличие от других нуклеотидов, АТФ содержит не один, а три остатка фосфорной кислоты. АТФ относится к макроэргическим веществам — веществам, содержащим в своих связях большое количество энергии.



Рис. 278. Аденозинтрифосфорная кислота.



АТФ — нестабильная молекула: при отщеплении концевого остатка фосфорной кислоты АТФ переходит в АДФ (аденозиндифосфорную кислоту). Распаду может подвергаться и АДФ с образованием АМФ (аденозинмонофосфорная кислота). Так как гидролитическое отщепление концевых остатков требует затрат энергии, выход свободной энергии при отщеплении каждого концевого остатка составляет около 30,5 кДж. Отщепление третьей фосфатной группы сопровождается выделением только 13,8 кДж. Таким образом, АТФ имеет две макроэргические связи.

Вместе с тем, при наличии в клетке свободной энергии осуществляется ресинтез АТФ. Синтез АТФ происходит в основном в митохондриях. Для образования каждой макроэргической связи требуется 40 кДж.
1   ...   32   33   34   35   36   37   38   39   ...   53


написать администратору сайта