электив. Пояснительная записка Основной задачей обучения математике в школе является сознательное овладение учащимися системой математических знаний и умений, необходимых в повседневной жизни.
Скачать 0.71 Mb.
|
Степенная функция с показателем 3 Свойства. Кубическая парабола. Функции , , .Их свойства и графики. Степенная функция с показателем степени больше 3. Преобразование графиков функций: параллельный перенос, симметрия, растяжение/сжатие, отражение. Задачи-великаны Отработка задач № 24 КИМ ОГЭ Отработка задач № 25 КИМ ОГЭ Отработка задач № 26 КИМ ОГЭ Геометрические фигуры Фигуры в геометрии и в окружающем мире Геометрическая фигура. Внутренняя, внешняя области фигуры, граница. Линии и области на плоскости. Выпуклая и невыпуклая фигуры. Плоская и неплоская фигуры. Выделение свойств объектов. Формирование представлений о метапредметном понятии «фигура». Точка, отрезок, прямая, луч, ломаная, плоскость, угол, биссектриса угла и ее свойства, виды углов, многоугольники, окружность и круг. Осевая симметрия геометрических фигур. Центральная симметрия геометрических фигур. Многоугольники Многоугольник, его элементы и его свойства. Правильные многоугольники. Выпуклые и невыпуклые многоугольники. Сумма углов выпуклого многоугольника. Треугольник. Сумма углов треугольника. Равнобедренный треугольник, свойства и признаки. Равносторонний треугольник. Медианы, биссектрисы, высоты треугольников. Замечательные точки в треугольнике. Неравенство треугольника. Четырехугольники. Параллелограмм, ромб, прямоугольник, квадрат, трапеция. Свойства и признаки параллелограмма, ромба, прямоугольника, квадрата. Теорема Вариньона. Окружность, круг Их элементы и свойства. Хорды и секущие, их свойства. Касательные и их свойства. Центральные и вписанные углы. Вписанные и описанные окружности для треугольников. Вписанные и описанные окружности для четырехугольников. Вневписанные окружности. Радикальная ось. Фигуры в пространстве (объемные тела) Многогранник и его элементы. Названия многогранников с разным положением и количеством граней. Первичные представления о пирамидах, параллелепипедах, призмах, сфере, шаре, цилиндре, конусе, их элементах и простейших свойствах. Отношения Равенство фигур Свойства и признаки равенства треугольников. Дополнительные признаки равенства треугольников. Признаки равенства параллелограммов. Параллельность прямых Признаки и свойства параллельных прямых. Аксиома параллельности Евклида. Первичные представления о неевклидовых геометриях. Теорема Фалеса. Перпендикулярные прямые Прямой угол. Перпендикуляр к прямой. Серединный перпендикуляр к отрезку. Свойства и признаки перпендикулярности прямых. Наклонные, проекции, их свойства. Подобие Пропорциональные отрезки, подобие фигур. Подобные треугольники. Признаки подобия треугольников. Отношение площадей подобных фигур. Взаимное расположение прямой и окружности, двух окружностей. Измерения и вычисления Величины Понятие величины. Длина. Измерение длины. Единцы измерения длины. Величина угла. Градусная мера угла. Синус, косинус и тангенс острого угла прямоугольного треугольника. Понятие о площади плоской фигуры и ее свойствах. Измерение площадей. Единицы измерения площади. Представление об объеме пространственной фигуры и его свойствах. Измерение объема. Единицы измерения объемов. Измерения и вычисления Инструменты для измерений и построений; измерение и вычисление углов, длин (расстояний), площадей, вычисление элементов треугольников с использованием тригонометрических соотношений. Площади. Формулы площади треугольника, параллелограмма и его частных видов, трапеции, формула Герона, формула площади выпуклого четырехугольника, формулы длины окружности и площади круга. Площадь кругового сектора, кругового сегмента. Площадь правильного многоугольника. Теорема Пифагора. Пифагоровы тройки. Тригонометрические соотношения в прямоугольном треугольнике. Тригонометрические функции тупого угла. Теорема косинусов. Теорема синусов. Решение треугольников. Вычисление углов. Вычисление высоты, медианы и биссектрисы треугольника. Расстояния Расстояние между точками. Расстояние от точки до прямой. Расстояние между фигурами. Равновеликие и равносоставленные фигуры. Свойства (аксиомы) длины отрезка, величины угла, площади и объема фигуры. Геометрические построения Геометрические построения для иллюстрации свойств геометрических фигур. Инструменты для построений. Циркуль, линейка. Простейшие построения циркулем и линейкой: построение биссектрисы угла, перпендикуляра к прямой, угла, равного данному. Построение треугольников по трем сторонам, двум сторонам и углу между ними, стороне и двум прилежащим к ней углам, по другим элементам. Деление отрезка в данном отношении. Основные методы решения задач на построение (метод геометрических мест точек, метод параллельного переноса, метод симметрии, метод подобия). Этапы решения задач на построение. Геометрические преобразования Преобразования Представление о межпредметном понятии «преобразование». Преобразования в математике (в арифметике, алгебре, геометрические преобразования). Движения Осевая и центральная симметрии, поворот и параллельный перенос. Комбинации движений на плоскости и их свойства. Подобие как преобразование Гомотетия. Геометрические преобразования как средство доказательства утверждений и решения задач. Векторы и координаты на плоскости Векторы Понятие вектора, действия над векторами, коллинеарные векторы, векторный базис, разложение вектора по базисным векторам. Единственность разложения векторов по базису, скалярное произведение и его свойства, использование векторов в физике. Координаты Основные понятия, координаты вектора, расстояние между точками. Координаты середины отрезка. Уравнения фигур. Применение векторов и координат для решения геометрических задач. Календарно-тематическое планирование (составлено в соответствии с локальным актом МБОУ – Теляковской ООШ)
Примерный вариант итоговой работы |