Физика 1-15. Преобразования Галилея
Скачать 230.96 Kb.
|
Вопрос 1 Релятивистская механика — теория, в которой, в отличие от классической механики, где пространственные координаты и время являются независимыми, при отсутствии голономных связей зависящих от времени, (время является абсолютным, то есть течёт одинаково во всех системах отсчёта) и действуют преобразования Галилея, события происходят в четырёхмерном пространстве, объединяющем физическое трёхмерное пространство и время (пространство Минковского) и действуют преобразования Лоренца. Таким образом, в отличие от классической механики, одновременность событий зависит от выбора системы отсчёта. Основные законы релятивистской механики — релятивистское обобщение второго закона Ньютона и релятивистский закон сохранения энергии-импульса являются следствием такого «смешения» пространственных и временной координат при преобразованиях Лоренца. [править]Второй закон Ньютона в релятивистской механике Сила определяется как , также известно выражение для релятивистского импульса: Взяв для определения силы производную по времени от последнего выражения, получим: где введены обозначения: и . В результате выражение для силы приобретает вид: Отсюда видно, что в релятивистской механике в отличие от нерелятивистского случая ускорение не обязательно направлено по силе, в общем случае ускорение имеет также и составляющую, направленную по скорости. Механи́ческим движе́нием тела называется изменение его положения в пространстве относительно других тел с течением времени. При этом тела взаимодействуют по законам механики. Раздел механики, описывающий геометрические свойства движения без учёта причин, его вызывающих, называется кинематикой. В более общем значении движением называется изменение состояния физической системы с течением времени. Например, можно говорить о движении волны в среде. механике Билет 2 Система отсчёта — это совокупность тела отсчета, связанной с ним системы координат и системы отсчёта времени, по отношению к которым рассматривается движение (или равновесие) каких-либо материальных точек или тел[1][2]. Математически движение тела (или материальной точки) по отношению к выбранной системе отсчёта описывается уравнениями, которые устанавливают, как изменяются с течением времени t координаты, определяющие положение тела (точки) в этой системе отсчёта. Эти уравнения называются уравнениями движения. Например, в декартовых координатах х, y, z движение точки определяется уравнениями , , . В современной физике любое движение является относительным, и движение тела следует рассматривать лишь по отношению к какому-либо другому телу (телу отсчёта) или системе тел. Нельзя указать, например, как движется Луна вообще, можно лишь определить её движение, например, по отношению к Земле, Солнцу, звёздам и т. п. Система координат — комплекс определений, реализующий метод координат, то есть способ определять положение точки или тела с помощью чисел или других символов. Совокупность чисел, определяющих положение конкретной точки, называется координатамиэтой точки. Инерциа́льная систе́ма отсчёта (ИСО) — система отсчёта, в которой справедлив первый закон Ньютона (закон инерции): все свободные тела (то есть такие, на которые не действуют внешние силы или действие этих сил компенсируется) движутся прямолинейно и равномерно или покоятся[1]. Эквивалентной является следующая формулировка, удобная для использования в теоретической механике[2]: БИЛЕТ 3 Кинетическая энергиявращательного движения — энергия тела, связанная с его вращением. Основные кинематические характеристики вращательного движения тела — его угловая скорость () и угловое ускорение. Основные динамические характеристики вращательного движения — момент импульса относительно оси вращения z: и кинетическая энергия где Iz — момент инерции тела относительно оси вращения. Похожий пример можно найти при рассмотрении вращающейся молекулы с главными осями инерции I1, I2 и I3. Вращательная энергия такой молекулы задана выражением где ω1, ω2, и ω3 — главные компоненты угловой скорости. В общем случае, энергия при вращении с угловой скоростью находится по формуле: , где — тензор инерции. Кинетическая энергиявращательного движения — энергия тела, связанная с его вращением. Основные кинематические характеристики вращательного движения тела — его угловая скорость () и угловое ускорение. Основные динамические характеристики вращательного движения — момент импульса относительно оси вращения z: и кинетическая энергия где Iz — момент инерции тела относительно оси вращения. Похожий пример можно найти при рассмотрении вращающейся молекулы с главными осями инерции I1, I2 и I3. Вращательная энергия такой молекулы задана выражением где ω1, ω2, и ω3 — главные компоненты угловой скорости. В общем случае, энергия при вращении с угловой скоростью находится по формуле: , где — тензор инерции. БИЛЕТ 4 |