Главная страница
Навигация по странице:

  • Усадка нефти

  • Коэффициент сжимаемости нефти

  • Температура застывания

  • Нефтяные газы и их свойства.

  • Молекулярная масса

  • Коэффициент растворимости газа

  • Растворимость газов в воде

  • Понятия о нефтяных эмульсиях.

  • Лекция Оператор товарный 4 разряд (1). Программа Оператор товарный 4 разряд


    Скачать 166.87 Kb.
    НазваниеПрограмма Оператор товарный 4 разряд
    Дата28.04.2023
    Размер166.87 Kb.
    Формат файлаdocx
    Имя файлаЛекция Оператор товарный 4 разряд (1).docx
    ТипПрограмма
    #1095428
    страница2 из 8
    1   2   3   4   5   6   7   8

    Плотность нефти - физическая величина, измеряемая отношением массы нефти к единице объема. Единица измерения - кг/м3.

    Пользуются понятием относительной плотности нефти численно равной отношению плотности нефти к плотности дистиллированной воды при t = +4 оС.

    Плотность нефти в пластовых условиях значительно отличается от плотности этой же нефти на поверхности за счет изменения объема.

    Например: плотность нефти Муравленковского месторождения в пластовых условиях 781 кг/м3, а в поверхностных условиях - 853 кг/м3;плотность нефти Меретояхинского месторождения соответственно, 597 кг/м3 и 833 кг/м3.

    Усадка нефти характеризует разницу между объемом пластовой и дегазированной нефти, отнесенную к объему нефти в пластовых условиях.

    Вязкость- свойство жидкости оказывать сопротивление перемещению ее частиц при движении. Различают динамическую, кинематическую и условную вязкость нефти.

    Единица измерения соответственно, Па∙с, м2.

    Поверхностное натяжение представляет собой силы реакции, противодействующие изменению формы поверхности под давлением поверхностного слоя, возникающего вследствие отсутствия на поверхности среды взаимного уравновешения молекулярного притяжения. Данный параметр необходим для выбора применения физико-химических методов повышения нефтеотдачи.

    Коэффициент сжимаемости нефти – показатель изменения единицы объема пластовой нефти при изменении давления на 0,1 Мпа. Он характеризует упругость нефти.

    Теплоемкость нефтей – является особенно важной характеристикой для тех из них, которые можно транспортировать по трубопроводам только с предварительным подогревом. Повышение температуры снижает вязкость нефти и позволяет сделать ее пригодной для перекачки. Количество энергии, которое необходимо затратить для нагревания нефти, зависит от ее теплоемкости. Для большинства нефтей теплоемкость лежит в пределах 1500-2500 Дж/ (кг-К).

    Температура застывания – имеет значение при осуществлении технологических операций с нефтью, например, при определении времени безопасной остановки перекачки для проведения ремонтных работ. Так как нефти являются смесью различных углеводородов, то у них переход из жидкого состояния в твердое происходит постепенно в некотором интервале температур. Чем ближе фактическая температура нефти к ее температуре застывания, тем больше энергозатрат требуется на ее перемещение. На температуру застывания сильное влияние оказывают содержащиеся в нефти парафины, асфальтосмолистых веществ, а также предварительная термообработка. В соответствии с ГОСТ 20287-74 температурой застывания считается температура, при которой охлаждаемая в пробирке нефть не изменяет уровня при наклоне пробирки на 450 в течение 1 мин.

    Нефтяные газы и их свойства.

    Природные углеводородные газы находятся в недрах земли или в виде самостоятельных залежей, образуя чисто газовые месторождения, либо в растворенном виде содержится в нефтяных залежах. Такие газы называются нефтяными или попутными, так как их добывают попутно с нефтью.

    Природные нефтяные газы – смеси предельных углеводородов, главной составляющей которой является метан. В виде примесей в природном газе присутствуют азот, углекислый газ, сероводород, меркаптаны, гелий, аргон и пары ртути.

    Физические свойства природного газа зависят от его состава, но в целом они близки к свойствам метана, как основного компонента смеси.

    Попутные газы месторождений Муравленковского региона содержат от 59,7 % до 84 % метана.

    Молекулярная масса газа: 16-20 кг/кмоль.

    Плотность газа: 0,73 – 1 т/м3.

    При расчетах пользуются относительной плотностью - плотность газа, взятая по отношению к плотности воздуха.Относительная плотность нефтяных газов колеблется от 0.554 для метана до 2.49 для пентана и выше. Чем больше в нефтяном газе легких углеводородов - метана СН4 и этана С2Н6 (относительная плотность - 1.038), тем легче этот газ. При нормальных условиях метан и этан находятся в газообразном состоянии. Следующими за ними по относительной плотности являются пропан С3Н8(1.522) и бутан С4Н10 (2.006), которые также относятся к газам, но легко переходят в жидкость даже при небольших давлениях.

    Относительная плотность попутных газов Муравленковского региона варьируется от 0,763 до 1,029.

    Растворимость углеводородных газов в жидкости при неизменной температуре определяют по формуле:

    S = a Р b ,

    где S – объем газа, растворенного в единице объема жидкости, приведенной к стандартным условиям; Р – давление газа над жидкостью, ‑ коэффициент растворимости газа в жидкости, характеризующий объем газа (приведенный к стандартным условиям), растворенный в единице объема жидкости при увеличении давления на 1 МПа; b- показатель, характеризующий степень отклонения растворимости реального газа от идеального. Значение a и b зависят от состава газа и жидкости.

    Вязкость нефтяного газа при давлении 0,1 МПа и температуре 00С обычно не превышает 0,01 МПа·с. С повышением давления и температуры она незначительно увеличивается. Однако при давлениях выше 3 МПа увеличение температуры вызывает понижение вязкости газа, причем газы, содержащие более тяжелые углеводороды, как правило, имеют большую вязкость.

    Теплоемкость газа. Теплоемкостью называется количество тепла, необходимое для нагревания единицы веса или объема этого вещества на 10С. Весовая теплоемкость газа измеряется в кДж/кг∙град, а объемная в кДж/м3∙град.

    Теплота сгорания газа. Теплота сгорания какого-либо вещества определяется количеством тепла, выделяющимся при сжигании единицы веса или единицы объема данного вещества. Теплота сгорания газов выражается в кДж/кг и кДж/м3 и является основным показателем, характеризующим газ или топливо. Если при постоянной температуре повышать давление какого-либо газа, то после достижения определенного значения давления этот газ сконденсируется, т.е. перейдет в жидкость. Для каждого газа существует определенная предельная температура, выше которой ни при каком давлении газ нельзя перевести в жидкое состояние.

    Наибольшая температура, при которой газ не переходит в жидкое состояние, как бы велико ни было давление, называется критической температурой.

     Природный газ - смесь газов. Компонентами природного газа являются углеводороды парафинового ряда: метан, этан, пропан, изобутан, а также неуглеводородные газы: сероводород, углекислый газ, азот. При эксплуатации газовых и газоконденсатных месторождений в скважинах, газосборных сетях, магистральном газопроводе при определенных термодинамических условиях образуется кристаллогидраты. По внешнему виду они похожи на сажеобразную массу или лед. Гидраты образуются при наличии капельной влаги и определенных давлениях и температурах. В зависимости от преобладания в нефтяных газах легких (метан, этан) или тяжелых (пропан и выше) углеводородов газы разделяются на:

    Сухие - природный газ, который не содержит тяжелых углеводородов или содержит их в незначительных количествах.

    Жирные - газ, содержащий тяжелые углеводороды в таких количествах, когда из него целесообразно получать сжиженные газы или газовые бензины.

    На практике принято считать жирным газом такой, в 1 м3 которого содержится более 60 гр газового бензина. При меньшем содержании газового бензина газ называют сухим. С тяжелыми нефтями добывают преимущественно сухой газ, состоящий главным образом из метана. В нефтяных газах, кроме углеводородов, содержатся в незначительных количествах углекислый газ, сероводород и др. Важной характеристикой природного газа является растворимость его в нефти.

    Коэффициент растворимости газа (газовый фактор) показывает, сколько газа растворяется в единице объема жидкости при повышении давления на единицу. Коэффициент растворимости в зависимости от условий растворения изменяется от 0,4·10-5 до 1·10-5 Па-1. Со снижением давления до определенного значения (давление насыщения) начинает выделяться растворенный в нефти газ. По мере поступления от забоя скважины нефти с газом, газ имеет свойство расширяться, в результате - объем газа больше объема поступления нефти. Газовый фактор не на всех месторождениях, пластах одинаков. Он обычно колеблется от 30 м33 до 100 м33 и выше. Давление, при котором из нефти начинают выделяться первые пузырьки растворенного газа, называют давлением насыщения пластовой нефти. Это давление зависит от состава нефти и газа, соотношения их объемов и от температуры. Наибольшая температура, при которой газ не переходит в жидкое состояние, как бы, велико не было давление, называется критической температурой. Давление соответствующее критической температуре называется критическим давлением. Таким образом, критическое давление - это предельное давление, при котором и менее которого газ не переходит в жидкое состояние, как бы ни была низка температура.

    Гидратами углеводородных газов называются кристаллические вещества, образованные ассоциированными молекулами углеводородов и воды; они имеют различную кристаллическую структуру.

    Свойство гидратов газов позволяет рассматривать их как твердые растворы. Исследования показывают, что содержание водяного пара в газообразной фазе в системе газ - гидрат меньше, чем в системе газ - вода.

    Возникновение гидрата обусловлено определенными давлением и температурой при насыщении газа парами воды. Гидраты распадаются после того, как упругость паров воды будет ниже парциальной упругости паров исследуемого гидрата. Углеводородные и некоторые другие газы, контактирующие с водой при определенных давлениях и температуре, также могут образовывать кристаллогидраты. Кристаллогидраты природных газов внешне похожи на мокрый спрессованный снег, переходящий в лед. Плотность гидратов несколько меньше плотности воды – 980 кг/м3. Образование их сопровождается выделением тепла, разложение – поглощением. Существует мнение ученых-геологов, что, значительные запасы природного газа связаны с газогидратными залежами, расположенными в зонах вечномерзлотных пород, и на дне океанов, где, как известно, температура составляет 2¸3 0С.

    Пластовые воды имеются в большинстве нефтегазовых месторождениях и являются обычным спутником нефти. Помимо пластов, в которых вода залегает вместе с нефтью, встречаются и чисто водоносные пласты. Пластовая вода в нефтяных и газовых залежах может находиться не только в чисто водяной зоне, но и в нефтяной и газовой, насыщая вместе с нефтью и газом продуктивные породы залежей. Эту воду называют связанной или погребенной. До проникновения в осадочные отложения нефти поровое пространство между зернами породы было заполнено водой. В процессе тектонических вертикальных перемещений горных пород (коллекторов нефти и газа) и после них углеводороды мигрировали в повышенные части пластов, где происходило распределение жидкостей и газов в зависимости от их плотности. Содержание связанной воды в породах нефтяных залежей колеблется от долей процента до 70% объема пор и в большинстве коллекторов составляет 20-30% этого объема. Пластовые воды обычно сильно минерализованы. Степень их минерализации колеблется от нескольких сот граммов на 1 м3 в пресной воде и до 80 кг/м3 в концентрированных рассолах. Минеральные вещества, содержащиеся в пластовых водах, представлены солями натрия, кальция, магния, калия и других металлов. Основные соли пластовых вод - хлориды, а также карбонаты щелочных металлов. Из газообразных веществ пластовые воды содержат углеводородные газы и иногда сероводород. Плотность пластовой воды в зависимости от количества растворенных в ней солей колеблется в пределах 1,01-1,02 г/см3 и более. По значению плотности наряду с другими данными судят о происхождении воды. Вязкость пластовой воды в большинстве нефтяных месторождений меньше вязкости нефти. С повышением температуры вязкость воды уменьшается. Пластовые воды обладают электропроводностью, которая зависит от степени минерализации.

    Коэффициент сжимаемости воды, т.е. изменение единицы объема ее при изменении давления на 0,1 МПа в пластовых условиях, находится в пределах 3,7·10-5 ¸ 5·10-5 1/0,1 МПа в зависимости от температуры и абсолютного давления. Содержание в воде растворенного газа повышает ее сжимаемость.

    Растворимость газов в воде значительно ниже растворимости их в нефтях. Рост минерализации воды способствует уменьшению растворимости в ней газа. В прямой зависимости от минерализации вод находится и электропроводность. Пластовые воды являются электролитом.

    Воды нефтяных месторождений могут содержать бактерии органических веществ, которые придают различную окраску (розовую, красную, молочную).

    Вязкость пластовой воды при 200С составляет 1 мПа·с, а при 1000С – 0,284 мПа·с.

     Подтоварная вода содержит большое количество как органических, так и неорганических соединений, точный состав сильно варьируется в зависимости от геологической структуры месторождения, состава добываемого флюида. Кроме того, вода может содержать бактерии, суспендированные механические примеси, радионуклиды и тяжелые металлы. Таким образом, пластовая вода представляет собой достаточно агрессивную многокомпонентную жидкость, которая требует дополнительной очистки перед последующей утилизацией. Подтоварную воду нельзя спускать в реки или просто на поверхность земли. Пластовая вода крайне вредно действует на окружающую среду, содержащую неорганические соли, органические соли, органические кислоты и ионы тяжелых металлов, при этом она может иметь уровень радиоактивности, превышающий уровень радиоактивности окружающей среды.

    Понятия о нефтяных эмульсиях.

    На разных стадиях разработки нефтяных месторождений со­держание воды в нефти может быть различным: в начальной стадии может добываться практически безводная нефть, затем количество воды в добываемой нефти постепенно увеличивается и на конечных стадиях разработки месторождения может достигать 90% и более. Вода в нефти появляется вследствие поступления к забою скважины подстилающей воды или воды, закачиваемой в пласт с целью поддержания давления. При движении нефти, и пластовой воды по стволу скважины и нефтесборным трубопроводам происходит их взаимное перемешивание, а в результате перемешивания — дробление. П роцесс дробления одной жидкости в другой называют диспергированием. В результате диспергирования одной жидкости в другой образуются эмульсии. Под эмульсией понимают такую смесь двух взаимно не раство­римых (или очень мало растворимых) жидкостей, одна из которых диспергирована в другой в виде мелких капелек (глобул). Диспергированную жидкость называют внутренней, или дис­персной фазой, а жидкость, в которой она находится, — дисперсионной, или внешней средой. Нефтяные эмульсии бывают двух типов: вода в нефти (В/Н) и нефть в воде (Н/В). Почти все эмульсии, встречающиеся при добыче нефти, являются эмульсиями типа вода в нефти (В/Н). Содержание пластовой воды в таких эмульсиях колеблется в широких пределах: от де­сятых долей процента до 90% и более. Эмульсии типа нефть в воде (В/Н) (впластовой воде диспергированы капельки нефти), встречающиеся в нефтепромысловой практике значительно реже, обычно содержат менее 1% нефти (в среднем 1000 мг/л). Для образования эмульсии недостаточно только перемешива­ния двух несмешивающихся жидкостей. Если взять чистую воду и чистую нефть, то сколько бы мы их ни перемешивали, эмульсия не образуется. Чтобы она образовалась, необходимо наличие в нефти особых веществ — природных эмульгаторов. Такие природные эмульгаторы в том или ином количестве всегда содержатся в пластовой нефти. К нам относятся асфальтены, смолы, нефтерастворимые органические кислоты и другие мельчайшие механические примеси, как ил и глина. В процессе перемешивания нефти с пластовой водой и образования мелких капелек воды частицы эмульгирующего вещества на поверхности этих капелек (или, как обычно принято говорить, на поверхности раздела фаз) образуют пленку (оболочку), препятствующую слиянию капелек. На рис.1 схематически изображена такая пленка на поверхности глобулы воды. С явлением образования пленки на поверхности глобулы воды связывают процесс «старения» эмульсии. Под процессом старения понимают упрочнение пленки эмульгатора с течением времени. Процесс старения эмульсии может протекать быстро или медленно от нескольких часов до 3-4 дней. Обычно первоначально этот процесс идет очень интенсивно, но по мере насыщения поверхностного слоя глобул эмульгаторами замедляется или даже прекращается. По истечении определенного времени пленки вокруг глобул воды становятся очень прочными и трудно поддаются разрушению. В зависимости от размера капелек воды и степени старения нефтяные эмульсии разделяются на три вида:

    - легкорасслаивающиеся;

    - средней стой­кости;

    - стойкие.

    В легкорасслаивающихся эмульсиях обычно большинство глобул крупные — размером от 50 до 100 мкм, в то время как стойкие эмульсии содержат в основном мелкие глобулы размерами от 0,1 до 20 мкм. Эмульсии средней стойкости занимают промежуточное положение. Кроме отмеченных выше условий на, стойкость водонефтяных эмульсий влияют и некоторые другие факторы: температура, содержание парафина, условия образования эмульсии количество и состав эмульгированной воды и др.

    Основными характеристиками нефтяных эмульсий являются: агрегативная устойчивость, вязкость, размер эмульгированных глобул водной фазы.

    Устойчивость эмульсий – это способность в течение определенного времени не разрушаться и не разделяться на две несмешивающиеся фазы.

    Вязкость эмульсий зависит от содержания воды и наибольшая вязкость эмульсий для сырой нефти любых сортов приблизительно равна вязкости сырой нефти, умноженной на коэффициент 1,3; 1,8; 2,7; 4,1 для эмульсий, содержащих соответственно 10, 20, 30, 40% воды.

    С повышением температуры вязкость нефти уменьшается, что способствует снижению стойкости эмульсии. С понижением температуры из нефти выделяются кристаллики растворенного в ней парафина, который накапливается на оболочке глобулы и увеличивает ее прочность. Поэтому эмульсии нефти, содержащей парафин, в зимних условиях имеют большую устойчивость. Интенсивность перемешивания нефти с водой при добыче также влияет на стойкость эмульсии. При фонтанном способе добычи нефти в результате постепенного выделения газа в подъемных трубах и соответственного увеличения скорости потока могут образоваться весьма стойкие эмульсии. Дополнительное переме­шивание нефти происходит при резких поворотах потока в фонтанной арматуре и при прохождении через штуцеры. Степень диспергирования капель воды при прохождении через штуцер тем больше, чем больше перепад давления в штуцере. При газлифтном способе добычи нефти условия для образования эмульсий примерно те же, что и при фонтанной добыче. Образование эмульсий при газлифтном способе происходит в основном в месте ввода рабочего агента в насосно-компрессорные трубы. Эмульсии, образующиеся при газлифтном способе добычи нефти, также отличаются стойкостью. При глубинно-насосной эксплуатации скважин эмульгирование нефти происходит в узлах клапана, в паре плунжер — цилиндр и в подъемных трубах при возвратно-поступательном движении насосных штанг. При использовании погружных электроцентробежных насосов перемешивание продукции скважины происходит в рабочих ко­лесах насоса, а также при турбулентном движении смеси в подъемных трубах. Стойкость эмульсии при добыче нефти глубинными штанговыми насосами значительно ниже, чем при эксплуатации погружными электроцентробежными насосами, но она может повышаться в обоих случаях при малом к. п. д. оборудования. Особенно сильное влияние на стойкость эмульсии при насосной эксплуатации оказывают неисправности оборудования — пропуски в насосах через неплотности, изношенные участки. В случае пропуска жидкости в клапанных узлах за счет давления столба жидкости над клапаном истечение жидкости происходят с большой скоростью, что вызывает турбулизацию и эмульгирование нефти. Особенно сильное эмульгирование происходит при наличии зазора плунжера. Немалую роль в повышении стойкости эмульсий играет также и наземное оборудование - это система нефтесборных труб, распределительные коллекторы групповых замерных установок, штуцеры, задвижки, клапаны, уголки, тройники и сепараторы.

    В современных технологиях добычи нефти применяются сотни различных химических веществ, назначение которых, несмотря на функциональное разнообразие, преследует одну цель – интенсифицировать тот или иной технологический процесс.

    Применение этих агентов требует определенной осторожности, основанной на знании их физико-химических свойств, как в однородном виде, так и в смесях со скважинными флюидами.

    По каждому из допущенных к применению веществ выдается специальный паспорт и инструкция по их безопасному применению. Следует иметь в виду, что многие из применяемых химреагентов являются огнеопасными, взрывоопасными, токсичными, т.е. их использование сопряжено с соблюдением соответствующих правил и требований.

    Комплекс этих требований должен включать в себя несколько основных положений:

    - подготовка реагента для использования (получение требуемой концентрации, ввод соответствующих добавок, приготовление необходимого объема);

    - транспортировка агента до места использование (выбор тары, транспорта, обеспечение защиты в процессе транспортировки транспортного средства и сопровождающего персонала, исключения возможных дорожных аварий;

    - расположение на месте применения (размещение насосных агрегатов и автоцистерн, их обвязка со скважиной, опрессовка трубопроводов, инструктаж персонала на рабочем месте, экипировка персонала в соответствии с характеристикой агента).
    1   2   3   4   5   6   7   8


    написать администратору сайта