Главная страница

производство анилина. Производство анилина


Скачать 1.07 Mb.
НазваниеПроизводство анилина
Дата23.01.2019
Размер1.07 Mb.
Формат файлаdocx
Имя файлапроизводство анилина.docx
ТипДокументы
#64889
страница6 из 7
1   2   3   4   5   6   7

2.5.Технологическая схема восстановления в жидкой фазе  


Восстановление в жидкой фазе. Каталитическое восстановление нитробензола водородом в жидкой фазе имеет не меньшее значение, чем парофазное восстановление. Этот процесс проходит при более низкой температуре, чем газофазный. Так как один из ингредиентов реакции (водород) газообразен, то для увеличения его концентрации в системе процесс ведут под давлением в автоклавах. В условиях периодического жидкофазного процесса нитросоединение, смешанное с твердым катализатором, обрабатывают водородом под давлением до прекращения поглощения последнего. После отстаивания образовавшегося амина его сифонируют и очищают от катализатора. Через несколько циклов катализатор отфильтровывают и регенерируют. Гидрирование проводят при энергичном перемешивании реакционной массы для равномерного распределения катализатора по всему объему.

  Как правило, жидкофазное гидрирование нитросоединений проводят в присутствии растворителя, которым может служить и образующийся в результате реакции амин. Свойства растворителя существенно влияют на скорость гидрирования. Гидрирование быстрее протекает в спиртах и в воде и медленнее — в ароматических углеводородах вследствие их сорбции на активных центрах катализатора. Испытано гидрирование нитросоединений также в водной эмульсии.

  Катализаторами жидкофазного гидрирования являются металлический никель (в технике), платина и палладий (в лабораторной практике). Никелевые катализаторы получают восстановлением водородом оксидов никеля, образующихся при прокаливании нитрата, карбоната или оксалата никеля. Активный и стойкий никелевый катализатор может быть получен нагреванием формиата никеля в смеси парафина и парафинового масла до 250 °С с последующей промывкой спиртом и петролейным эфиром. В производственных условиях удобно работать с катализаторами в виде гранул достаточно крупных, чтобы их не уносили потоки жидкости или газа. В этом случае исключается необходимость фильтрования продуктов восстановления и легче организуется непрерывный процесс.

  Широкое применение как катализатор гидрирования получил скелетный никелевый катализатор, так называемый никель Ренея. Его получают, обрабатывая никелевоалюминиевый сплав едкой щелочью при нагревании до полного выщелачивания алюминия. Остающийся при этом мелко раздробленный никель обладает очень большой поверхностью и весьма активен. Катализатор сохраняют под водой или под спиртом — сухой катализатор пирофорен. В катализаторе содержится значительное количество водорода, поэтому многие органические соединения можно гидрировать таким катализатором без введения водорода извне. Применение скелетного никелевого катализатора позволяет получать из нитросоединений амины при атмосферном давлении и комнатной температуре. На рис. 4 представлена одна из промышленных схем восстановления нитробензола в жидкой фазе в присутствии растворителя.

  Нитробензол, растворитель (метанол) и катализатор (никель Ренея) смешивают в аппарате 1 и подают в систему реакторов 2–5, одновременно в реакторы подается водород. Реакторы 2–4 имеют высоту около 6 м, в каждом аппарате есть три ряда охлаждающих трубок, в которых циркулирует вода. В реакторе 5, меньшем по размеру, происходит окончательное восстановление нитробензола. Давление в системе 15–20 МПа. Благодаря движению водорода катализатор находится в суспендированном состоянии, а реакционная смесь транспортируется через реакторы. Из сепаратора 8 часть катализаторной суспензии в метанольном растворе анилина насосом 9 направляют на рециркуляцию через смеситель 1. Основное количество реакционной смеси после отстаивания направляют в ректификационную колонну 10, где отгоняют метанол (дефлегматоры и кипятильники колонн на рисунке не показаны). После отгонки метанола в сепараторе 11 расслаивают кубовую жидкость на водный и анилиновый слои. Водный слой поступает в колонну 12, где сверху выводится азеотропная смесь анилина с водой, а из куба выходит вода, направляемая на биохимическую очистку перед спуском в водоем. В колонне 13 отгоняют воду из органического слоя. Водная фракция направляется обратно в сепаратор 11, а органический слой — в колонну 14, где в виде дистиллята отгоняют товарный анилин, а кубовые остатки направляют на сжигание. Выход анилина составляет 99 %.
http://chemanalytica.com/book/novyy_spravochnik_khimika_i_tekhnologa/12_obshchie_svedeniya/images/img_math/gr017.gif


Рис. 4. Схема восстановления нитробензола в жидкой фазе в присутствии растворителя:
 1 — смеситель; 2–5 — реакторы; 6,9 — насосы; 7 — дросселирующий клапан; 
8, 11 — сепараторы; 10,12–14 — ректификационные колонны
  Жидкофазное гидрирование нитробензола используется и в лабораторной практике, реакцию проводят при относительно невысоких температурах (начиная с комнатной), что благоприятно сказывается на выходе и качестве целевого продукта. Наиболее употребительные катализаторы  для  жидкофазного гидрирования в лаборатории: никель Ренея и палладий на угле. При проведении гидрирования через жидкую реакционную массу (раствор нитробензола в спирте или его эмульсия в воде), находящуюся в контакте с твердым катализатором, барботируют водород. Для увеличения скорости процесса его практически всегда ведут под давлением водорода. Чтобы обеспечить наилучший контакт водорода, раствора нитросоединения и твердого катализатора, что является важнейшим условием успешного проведения гидрирования, необходимо энергичное перемешивание реакционной массы. Для этого прибегают к специальным размешивающим устройствам или усиленному барботажу водорода, который берут со значительным избытком, а затем рециркулируют.
1   2   3   4   5   6   7


написать администратору сайта