Главная страница
Навигация по странице:

  • Классификация 1. Системы полнофункционального инженерного анализа

  • 2. Системы инженерного анализа, встроенные в тяжелые САПР

  • 3. Системы инженерного анализа среднего уровня

  • Метод конечных элементов

  • Метод конечных разностей

  • Основные направления в развитии САЕ

  • Проектирование. Производство. Типы организации производства Производство


    Скачать 128.17 Kb.
    НазваниеПроизводство. Типы организации производства Производство
    Дата29.10.2022
    Размер128.17 Kb.
    Формат файлаdocx
    Имя файлаПроектирование.docx
    ТипДокументы
    #760642
    страница10 из 13
    1   ...   5   6   7   8   9   10   11   12   13

    Использование электронных макетов в инженерном анализе

    CAE–системы


    CAE (англ. Computer-Aided Engineering) - это разнообразные программные продукты, обеспечивающие выполнение инженерных расчетов и физически подобной симуляции функционирования проектируемых изделий, проверки их работоспособности, прогнозирования длительности жизненного цикла, определения рабочих характеристик на этапе проектирования до изготовления опытных образцов и их испытаний, оптимизации этих характеристик.

    История

    CAE неразрывно связаны с CAD и CAM. Развитие этих программных продуктов шло параллельно. В начале 80-х годов XX столетия первые пользователи CAD/CAM/CAE применяли для работы графические терминалы, которые были компонентами мейнфреймов IBM и Control Data. Основными поставщиками аппаратного и программного обеспечения CAD/CAM/CAE были компании Applicon, Computervision и Intergraph. Поскольку мейнфреймы того времени были несовершенными, то появлялись определенные трудности. Интерактивный режим работы был практически недоступен из-за большой нагрузки на центральный процессор. Стоимость одной CAD/CAM/CAE системы составляла порядка $90000. С развитием прогресса аппаратные платформы CAD/CAM/CAE систем перешли с мейнфреймов на персональные компьютеры. Это было связано с меньшей стоимостью и большей производительностью ПК по сравнению с мейнфреймами. Закономерно снизилась и цена на CAD/CAM/CAE до $20000. На базе ПК создавались рабочие станции для CAD, которые поддерживали архитектуру IBM PC или Motorola. В середине 80-х годов появились архитектуры микропроцессоров с усеченным набором команд RISC (Reduced Instruction Set Computing). На их основе были разработаны более производительные рабочие станции, опиравшиеся на операционную систему Unix. С середины 90-х годов конкуренцию системам RISC/Unix составили технологии, разработанные компанией Intel на основе операционных систем MS Windows NT и MS Windows 2000. В настоящее время стоимость CAD/CAM/CAE систем снизилась и составляет не более $10000.

    Классификация

    1. Системы полнофункционального инженерного анализа, обладающие мощными средствами, большими хранилищами типов для сеток конечных элементов, а также всевозможных физических процессов. В них предусмотрены собственные средства моделирования геометрии. Кроме того, есть возможность импорта через промышленные стандарты Parasolid, ACIS. Полнофункциональные САЕ-системы лишены ассоциативной связи с CAD. Поэтому, если в процессе подсчета появляется необходимость изменить геометрию, то пользователю придется заново производить импорт геометрии и вводить данные для расчета. Самыми известными подобными системами считаются ANSYS/Multiphysics, AI*NASTRAN и MSC.NASTRAN. 

    2. Системы инженерного анализа, встроенные в тяжелые САПР, имеют значительно менее мощные средства анализа, но они ассоциативны с геометрией, поэтому отслеживают изменения модели. Расчетные данные структурированы и интегрированы в общую систему проектирования тяжелой САПР. К ним относятся Pro/MECHANICA для Pro/ENGINEER, Unigraphics NX CAEдля Unigraphics NX, Extensive Digital Validation (CAE) для I-deas, Catia CAE для CATIA.

    3. Системы инженерного анализа среднего уровня не имеют мощных расчетных возможностей и хранят данные в собственных форматах. Некоторые их них включают в состав встраиваемый интерфейс в CAD-системы, другие считывают геометрию из CAD. К первым относятся COSMOS/Works, COSMOS/Motion, COSMOS/FloWorks для SolidWorks Трехмерная проектная среда, ко вторым — visualNastran, Procision.

    Отрасли применения

    Наибольшей популярностью САЕ пользуются в следующих отраслях производства: машиностроение и станкостроение, оборонная и аэрокосмическая промышленность, энергетика, судостроение, производство полупроводников, телекоммуникации, химическая, фармацевтическая и медицинская промышленность, строительство, производство систем отопления, кондиционирования, вентиляции.

    Возможности САЕ

    С помощью САЕ можно проводить:

    · Прочностной анализ компонентов и узлов на основе метода конечных элементов;

    · Термический и гидродинамический анализ;

    · Кинематические исследования;

    Отдельно стоит выделить системы симуляции и моделирования сложных технологических процессов, таких как литье металлов и пластмасс, штамповка, химическое фрезерование и т. д. Особенностью подобных расчетов является совместное решение задач, описывающих различные физические процессы - гидродинамические течения, отверждение, теплоперенос, химические реакции полимеризации и прочее.

    · Моделирование таких процессов, как литье под давлением;

    Наряду с расчетом конструкций компьютерное моделирование и симуляция могут использоваться и для оптимизации проектов. Оптимизацию можно проводить для задач статики, устойчивости, установившихся и неустановившихся динамических переходных процессов, собственных частот и форм колебаний, акустики и аэроупругости. Все это делается одновременно, путем вариации параметров формы, размеров и других свойств проектируемого изделия. Эффективные алгоритмы оптимизации обрабатывают любое количество проектных параметров и ограничений. Вес, напряжения, перемещения, собственные частоты и многие другие характеристики могут рассматриваться либо в качестве целевых функций проекта (в этом случае их можно минимизировать или максимизировать), либо в качестве ограничений.

    Алгоритмы анализа чувствительности позволяют исследовать влияние различных параметров на поведение целевой функции и управлять процессом поиска оптимального решения. Кроме того, компьютерное моделирование применяется для планирования экспериментов (определение мест расположения датчиков) и оценки полноты полученных экспериментальных данных.

    · Оптимизацию продуктов или процессов.

    Численные методы

    CAE системы могут использовать в своей работе следующие математические методы:

    · Метод конечных элементов (МКЭ, Конечно-элементный анализ, КЭ анализ) - численный метод решения дифференциальных уравнений с частными производными, а также интегральных уравнений, возникающих при решении задач прикладной физики. Метод широко используется для решения задач механики деформируемого твёрдого тела, теплообмена, гидродинамики и электродинамики.

    · Метод конечных разностей - численный метод решения дифференциальных уравнений, основанный на замене производных разностными схемами. Является сеточным методом.

    · Метод конечных объемов (Метод контрольных объемов) - численный метод интегрирования систем дифференциальных уравнений в частных производных.

     Это обусловлено тем, что расчетные системы, построенные на основе численных методов, в отличие от аналитических, практически не зависят от геометрической конфигурации анализируемого изделия.

    Отдельно стоит выделить системы симуляции и моделирования сложных технологических процессов, таких как литье металлов и пластмасс, штамповка, химическое фрезерование и т. д. Особенностью подобных расчетов является совместное решение задач, описывающих различные физические процессы - гидродинамические течения, отверждение, теплоперенос, химические реакции полимеризации и прочее.

    Наряду с расчетом конструкций компьютерное моделирование и симуляция могут использоваться и для оптимизации проектов. Оптимизацию можно проводить

    для задач статики, устойчивости, установившихся и неустановившихся динамических переходных процессов, собственных частот и форм колебаний, акустики и аэроупругости. Все это делается одновременно, путем вариации параметров формы, размеров и других свойств проектируемого изделия. Эффективные алгоритмы оптимизации обрабатывают любое количество проектных параметров и ограничений. Вес, напряжения, перемещения, собственные частоты и многие другие характеристики могут рассматриваться либо в качестве целевых функций проекта (в этом случае их можно минимизировать или максимизировать), либо в качестве ограничений. Алгоритмы анализа чувствительности позволяют исследовать влияние различных параметров на поведение целевой функции и управлять процессом поиска оптимального решения. Кроме того, компьютерное моделирование применяется для планирования экспериментов (определение мест расположения датчиков) и оценки полноты полученных экспериментальных данных.

    Таким образом, численное моделирование задач прочности существенно экономит время, ресурсы, позволяет сократить объемы натурных испытаний, а также

    более тщательно оптимизировать конструкции.

    Метод конечных элементов

    Метод конечных элементов (МКЭ, Finite Elements Method, FEM) - наиболее распространенный численный метод решения задач прикладной механики, в первую очередь прочностных расчетов, механики деформируемого твердого тела, теплообмена. Суть метода заключается в том, что расчетная область разбивается на плоские или объемные, в зависимости от решаемой задачи, подобласти с элементарной геометрией (чаще всего методом триангуляции), для которых записаны простейшие системы дифференциальных уравнений.

    Каждая такая подобласть является конечным элементом, имеющим свой порядковый номер. Общие вершины конечных элементов называются узлами, которые также нумеруются. Кинематические граничные условия задаются в узлах на границе. Нагрузки на границе заменяются сосредоточенными силами в узлах, связь конечных элементов между собой осуществляется также в узлах. Процесс вычисления сводится к решению полученной системы элементарных дифференциальных уравнений.

    Современные системы автоматизации инженерных расчетов, как правило, применяются совместно с CAD-системами, зачастую просто интегрированы в них. Таким образом, инженер может оперативно провести проверочные расчеты непосредственно в процессе создания конструкции и при необходимости изменить ее так, чтобы удовлетворить требованиям работоспособности.

    Существенным достоинством расчетных систем перед проверочными натурными испытаниями является возможность определения элементов не только с недостаточной прочностью, но и с избыточной. Это позволяет оптимизировать геометрию деталей с целью снижения их массы, что особенно критично, например, в авиакосмической отрасли, двигателестроении.

    Расчетные системы позволяют «заглянуть» внутрь детали, что практически невозможно при натурных прочностных испытаниях, получить исчерпывающую картину распределения любых параметров: деформаций, напряжений, температурных полей и т. д. Что немаловажно - расчет может быть произведен не только для статического нагружения, но и в динамике, в сопряжении с кинематическим расчетом.

     Современные расчетные системы обеспечивают комплексный анализ характеристик конструкций, включая расчет напряженно-деформированного состояния, собственных частот и форм колебаний, анализ устойчивости, решение задач теплопередачи, исследование установившихся и неустановившихся процессов, акустических явлений, нелинейных статических процессов, нелинейных динамических переходных процессов, расчет критических частот и вибраций роторных машин, анализ частотных характеристик при воздействии случайных нагрузок. Предусмотрена возможность моделирования практически всех типов материалов, включая композитные и эластичные.

    Инженерный анализ Autodesk Simulation Multiphysics 2013

    Основные направления в развитии САЕ

    В процессе развития САЕ разработчики стремятся увеличить их возможности и расширить сферы внедрения. Преследуются следующие цели:

    · Совершенствование методов решения междисциплинарных задач моделирования;

    · Разработка новых платформ для интеграции различных систем САЕ, а также для интеграции САЕ-систем в PLM-решения;

    · Повышение интероперабельности САЕ и CAD систем;

    · Совершенствование методов построения расчетных сеток, описания граничных условий, параллельных вычисление и т.д;

    · Улучшение характеристик моделей, которые применяются для описания свойств материалов;

    · Оптимизация систем САЕ для компьютерных платформ с 64-битными и многоядерными процессорами, а тем самым улучшение условий для моделирования сложных конструкций с большим количеством степеней свободы.
    1   ...   5   6   7   8   9   10   11   12   13


    написать администратору сайта