Recommendations for the Standardization and Interpretation of the Electrocardiogram
Скачать 0.88 Mb.
|
67–72. 38. Zywietz C. Technical aspects of electrocardiogram recording. In: Macfarlane PW, Lawrie TDV, editors. Comprehensive Electrocardiology: Theory and Practice in Health and Disease. New York, NY: Pergamon Press, 1989:353– 404. 39. Bragg-Remschel DA, Anderson CM, Winkle RA. Frequency response characteristics of ambulatory ECG monitoring systems and their implications for ST segment analysis. Am Heart J 1982;103:20 –31. 40. Berson AS, Pipberger HV. The low-frequency response of electrocardiographs, a frequent source of recording errors. Am Heart J 1966;71: 779–89. 41. Pottala EW, Bailey JJ, Horton MR, Gradwohl JR. Suppression of baseline wander in the ECG using a bilinearly transformed, null-phase filter. J Electrocardiol 1989;22 Suppl:243–7. 42. Mortara DW. Digital filters for ECG signals. In: Computers in Cardiology New York, NY: Institute of Electrical and Electronics 18 Engineers, 1977:511– 4. 43. Zywietz C. Sampling rate of ECGs in relation to measurement accuracy. In: Wagner GS, Scherlag BG, Bailey JJ, editors. Computerized Interpretation of the Electrocardiogram. New York, NY: Engineering Foundation, 1986:122–5. 44. Berson AS, Pipberger HV. Electrocardiographic distortions caused by inadequate high-frequency response of direct-writing electrocardiographs. Am Heart J 1967;74:208 –18. 45. Yamamoto H, Miyahara H, Domae A. Is a higher sampling rate desirable in the computer processing of the pediatric electrocardiogram? J Electrocardiol 1987;20:321– 8. 46. Macfarlane PW, Coleman EN, Pomphrey EO, McLaughlin S, Houston A, Aitchison T. Normal limits of the high-fidelity pediatric ECG: preliminary observations. J Electrocardiol 1989;22 Suppl:162– 8. 47. Langner PH Jr., Geselowitz DB, Mansure FT, Lauer JA. High-frequency components in the electrocardiograms of normal subjects and of patients with coronary heart disease. Am Heart J 1961;62:746 –55. 48. Langner PH Jr., Geselowitz DB, Briller SA. Wide band recording of the electrocardiogram and coronary heart disease. Am Heart J 1973;86:308–17. 49. Goldberger AL, Bhargava V, Froelicher V, Covell J. Effect of myocardial infarction on high-frequency QRS potentials. Circulation 1981; 64:34–42. 50. Pettersson J, Warren S, Mehta N, et al. Changes in high-frequency QRS components during prolonged coronary artery occlusion in humans. J Electrocardiol 1995;28 Suppl:225–7. 51. Pettersson J, Carro E, Edenbrandt L, et al. Spatial, individual, and temporal variation of the high-frequency QRS amplitudes in the 12 standard electrocardiographic leads. Am Heart J 2000;139:352– 8. 52. Garson A Jr. Clinically significant differences between the “old” analog and the “new” digital electrocardiograms. Am Heart J 1987;114:194–7. 53. Warner RA, Hill NE. Using digital versus analog ECG data in clinical trials. J Electrocardiol 1999;32 Suppl:103–7. 54. Willems JL, Zywietz C, Arnaud P, van Bemmel JH, Degani R, Macfarlane PW. Influence of noise on wave boundary recognition by ECG measurement programs: recommendations for preprocessing. Comput Biomed Res 1987;20:543– 62. 55. Zywietz C, Willems JL, Arnaud P, et al. the CSE Working Party. Stability of computer ECG amplitude measurements in the presence of noise. Comput Biomed Res 1990;23:10 –31. 56. Reddy BR, Xue Q, Zywietz C. Analysis of interval measurements on CSE multilead reference ECGs. J Electrocardiol 1996;29 Suppl:62–6. 57. Kors JA, van Herpen G, van Bemmel JH. Variability in ECG computer interpretation: analysis of individual complexes vs analysis of a representative complex. J Electrocardiol 1992;25:263–71. 58. Xue Q, Reddy S. Algorithms for computerized QT analysis. J Electrocardiol 1998;30 Suppl:181– 6. 59. Azie NE, Adams G, Darpo B, et al. Comparing methods of measurement for detecting drug-induced changes in the QT interval: implications for thoroughly conducted ECG studies. Ann Noninvasive Electrocardiol 2004;9:166 –74. 60. Lee KW, Kligfield P, Okin PM, Dower GE. Determinants of precordial QT dispersion in normal subjects. J Electrocardiol 1998;31 Suppl:128–33. 61. Kors JA, van Herpen G. Measurement error as a source of QT dispersion: a computerised analysis. Heart 1998;80:453– 8. 62. Macfarlane PM, Chen CY, Chiang BN. Comparison of the ECG in apparently healthy Chinese and Caucasians. In: IEEE Computers in Cardiology 1987;1988:143– 6. 63. Chen CY, Chiang BN, Macfarlane PW. Normal limits of the electrocardiogram in a Chinese population. J Electrocardiol 1989;22:1–15. 64. Comprehensive Electrocardiology: Theory and Practice in Health and Disease. Vol 3. New York, NY: Pergamon Press, 1989. 65. Rijnbeek PR, Witsenburg M, Schrama E, Hess J, Kors JA. New normal limits for the paediatric electrocardiogram. Eur Heart J 2001;22:702–11. 66. Wu J, Kors JA, Rijnbeek PR, van Herpen G, Lu Z, Xu C. Normal limits of the electrocardiogram in Chinese subjects. Int J Cardiol 2003;87:37–51. 67. Bessette F, Nguyen L. Automated electrocardiogram analysis: the state of the art. Med Inform (Lond) 1989;14:43–51. 68. Jalaleddine SM, Hutchens CG, Strattan RD, Coberly WA. ECG data compression techniques: a unified approach. IEEE Trans Biomed Eng 1990;37:329–43. 69. GholamHosseini H, Nazeran H, Moran B. ECG compression: evaluation of FFT, DCT, and WT performance. Australas Phys Eng Sci Med 1998;21:186 –92. 70. Ahmeda SM, Abo-Zahhad M. A new hybrid algorithm for ECG signal compression based on the wavelet transformation of the linearly predicted error. Med Eng Phys 2001;23:117–26. 71. Bradie B. Wavelet packet-based compression of single lead ECG. IEEE Trans Biomed Eng 1996;43:493–501. 72. Hilton ML. Wavelet and wavelet packet compression of electrocardiograms. IEEE Trans Biomed Eng 1997;44:394–402. 73. Zigel Y, Cohen A, Katz A. The weighted diagnostic distortion (WDD) measure for ECG signal compression. IEEE Trans Biomed Eng 2000; 47:1424 –30. 74. Batista LV, Melcher EU, Carvalho LC. Compression of ECG signals by 19 optimized quantization of discrete cosine transform coefficients. Med Eng Phys 2001;23:127–34. 75. Reddy BR, Christenson DW, Rowlandson GI, Zywietz C, Sheffield T, Brohet C. Data compression for storage of resting ECGs digitized at 500 samples/second. Biomed Instrum Technol 1992;26:133– 49. 76. Hedstrom K, Macfarlane PW. Development of a new approach to serial analysis: the manufacturer’s viewpoint. J Electrocardiol 1996;29 Suppl: 35–40. 77. Macfarlane PW. Lead systems. In: Macfarlane PW, Lawrie TDV, editors. Comprehensive Electrocardiology: Theory and Practice in Health and Disease. New York, NY: Pergamon Press, 1989:315–52. 78. Berson AS, Pipberger HV. Skin-electrode impedance problems in electrocardiography. Am Heart J 1968;76:514 –25. 79. Patterson RP. The electrical characteristics of some commercial ECG electrodes. J Electrocardiol 1978;11:23– 6. 80. Olson WH, Schmincke DR, Henley BL. Time and frequency dependence of disposable ECG electrode-skin impedance. Med Instrum 1979;13:269 –72. 81. Pahlm O, Haisty WK Jr, Edenbrandt L, et al. Evaluation of changes in standard electrocardiographic QRS waveforms recorded from activitycompatible proximal limb lead positions. Am J Cardiol 1992;69:253–7. 82. Standardization of precordial leads: joint recommendations of the American Heart Association and the Cardiac Society of Great Britain and Ireland. Am Heart J 1938;15:107– 8. 83. Standardization of precordial leads: supplementary report. Am Heart J 1938;15:235–9. 84. Wenger W, Kligfield P. Variability of precordial electrode placement during routine electrocardiography. J Electrocardiol 1996;29:179–84. 85. Schijvenaars BJ, Kors JA, van Herpen G, Kornreich F, van Bemmel JH. Effect of electrode positioning on ECG interpretation by computer. J Electrocardiol 1997;30:247–56. 86. Schijvenaars RJ, Kors JA, van Herpen G, van Bemmel JH. Use of the standard 12-lead ECG to simulate electrode displacements. J Electrocardiol 1996;29 Suppl:5–9. 87. Zema MJ, Kligfield P. ECG poor R-wave progression: review and synthesis. Arch Intern Med 1982;142:1145– 8. 88. Surawicz B, Van Horne RG, Urbach JR, Bellet S. QS- and QR-pattern in leads V3 and V4 in the absence of myocardial infarction: electrocardiographic and vectorcardiographic study. Circulation 1955;12:391–405. 89. Zema MJ, Kligfield P. Electrocardiographic poor R wave progression, I: correlation with the Frank vectorcardiogram. J Electrocardiol 1979; 12:3–10. 90. Farb A, Devereux RB, Kligfield P. Day-to-day variability of voltage measurements used in electrocardiographic criteria for left ventricular hypertrophy. J Am Coll Cardiol 1990;15:618 –23. 91. Macfarlane PM, Colaco R, Stevens K, Reay P, Beckett C, Aitchison TC. Precordial electrode placement in women. Neth Heart J 2003;11: 118–22. 92. Rautaharju PM, Park L, Rautaharju FS, Crow R. A standardized procedure for locating and documenting ECG chest electrode positions: consideration of the effect of breast tissue on ECG amplitudes in women. J Electrocardiol 1998;31:17–29. 93. Colaco R, Reay P, Beckett C, Aitchison TC, Macfarlane PW. False positive ECG reports of anterior myocardial infarction in women. J Electrocardiol 2000;33 Suppl:239–44. 94. Wilson FN, Johnston FD, Macleod AG, Barker PS. Electrocardiograms that represent the potential variations of a single electrode. Am Heart J 1934;9:447–71. 95. Goldberger E. A simple electrocardiographic electrode of zero potential and a technic of obtaining augmented unipolar extremity leads. Am Heart J 1942;23:483. 96. Goldberger E. The aVl, aVr and aVf leads. Am Heart J 1942;24:378. 97. Kors JA, van Herpen G, Willems JL, van Bemmel JH. Improvement of automated electrocardiographic diagnosis by combination of computer interpretations of the electrocardiogram and vectorcardiogram. Am J Cardiol 1992;70:96 –9. 98. Warner RA, Hill NE, Mookherjee S, Smulyan H. Electrocardiographic criteria for the diagnosis of combined inferior myocardial infarction and left anterior hemiblock. Am J Cardiol 1983;51:718 –22. 99. Hill NE, Warner RA, Mookherjee S, Smulyan H. Comparison of optimal scalar electrocardiographic, orthogonal electrocardiographic and vectorcardiographic criteria for diagnosing inferior and anterior myocardial infarction. Am J Cardiol 1984;54:274–6. 100. Sodi-Pallares D, Cuellar A, Cabrera E. Sistema de 6 ejes con aplicacion al vector AT en las hipertrofias ventriculares. Arch Inst Cardiol Mexico 1944–1945;14:142–9. 101. Dower GE, Nazzal SB, Pahlm O, et al. Limb leads of the electrocardiogram: sequencing revisited. Clin Cardiol 1990;13:346–8. 102. Pahlm US, O’Brien JE, Pettersson J, et al. Comparison of teaching the basic electrocardiographic concept of frontal plane QRS axis using the classical versus the orderly electrocardiogram limb lead displays. Am Heart J 1997;134:1014–8. 103. Anderson ST, Pahlm O, Selvester RH, et al. Panoramic display of the orderly sequenced 12-lead ECG. J Electrocardiol 1994;27:347–52. 20 104. Menown IB, Adgey AA. Improving the ECG classification of inferior and lateral myocardial infarction by inversion of lead aVR. Heart 2000; 83:657– 60. 105. Mason RE, Likar I. A new system of multiple-lead exercise electrocardiography. Am Heart J 1966;71:196 –205. 106. Krucoff MW, Loeffler KA, Haisty WK Jr., et al. Simultaneous ST-segment measurements using standard and monitoring-compatible torso limb lead placements at rest and during coronary occlusion. Am J Cardiol 1994;74:997–1001. 107. Edenbrandt L, Pahlm O, Sornmo L. An accurate exercise lead system for bicycle ergometer tests. Eur Heart J 1989;10:268 –72. 108. Drew BJ, Califf RM, Funk M, et al. Practice standards for electrocardiographic monitoring in hospital settings: an American Heart Association scientific statement from the Councils on Cardiovascular Nursing, Clinical Cardiology, and Cardiovascular Disease in the Young: endorsed by the International Society of Computerized Electrocardiology and the American Association of Critical-Care Nurses [published correction appears in Circulation 2005;111:378]. Circulation 2004;110: 2721–46. 109. Nelwan SP, Meij SH, van Dam TB, Kors JA. Correction of ECG variations caused by body position changes and electrode placement during ST-T monitoring. J Electrocardiol 2001;34 Suppl:213– 6. 110. Rautaharju PM, Prineas RJ, Crow RS, Seale D, Furberg C. The effect of modified limb electrode positions on electrocardiographic wave amplitudes. J Electrocardiol 1980;13:109 –13. 111. Gamble P, McManus H, Jensen D, Froelicher V. A comparison of the standard 12-lead electrocardiogram to exercise electrode placements. Chest 1984;85:616 –22. 112. Sevilla DC, Dohrmann ML, Somelofski CA, Wawrzynski RP, Wagner NB, Wagner GS. Invalidation of the resting electrocardiogram obtained via exercise electrode sites as a standard 12-lead recording. Am J Cardiol 1989;63:35–9. 113. Dower GE, Yakush A, Nazzal SB, Jutzy RV, Ruiz CE. Deriving the 12-lead electrocardiogram from four (EASI) electrodes. J Electrocardiol 1988;21 Suppl:S182–7. 114. Feild DQ, Feldman CL, Horacek BM. Improved EASI coefficients: their derivation, values, and performance. J Electrocardiol 2002;35 Suppl: 23–33. 115. Drew BJ, Pelter MM, Wung SF, et al. Accuracy of the EASI 12-lead electrocardiogram compared to the standard 12-lead electrocardiogram for diagnosing multiple cardiac abnormalities. J Electrocardiol 1999;32 Suppl:38–47. 116. Horacek BM, Warren JW, Stovicek P, Feldman CL. Diagnostic accuracy of derived versus standard 12-lead electrocardiograms. J Electrocardiol 2000;33 Suppl:155– 60. 117. Sejersten M, Pahlm O, Pettersson J, et al. The relative accuracies of ECG precordial lead waveforms derived from EASI leads and those acquired from paramedic applied standard leads. J Electrocardiol 2003; 36:179–85. 118. Melendez LJ, Jones DT, Salcedo JR. Usefulness of three additional electrocardiographic chest leads (V7, V8, and V9) in the diagnosis of acute myocardial infarction. Can Med Assoc J 1978;119:745– 8. 119. Casas RE, Marriott HJ, Glancy DL. Value of leads V7-V9 in diagnosing posterior wall acute myocardial infarction and other causes of tall R waves in V1-V2. Am J Cardiol 1997;80:508 –9. 120. Matetzky S, Freimark D, Chouraqui P, et al. Significance of ST segment elevations in posterior chest leads (V7 to V9) in patients with acute inferior myocardial infarction: application for thrombolytic therapy. J Am Coll Cardiol 1998;31:506 –11. 121. Croft CH, Nicod P, Corbett JR, et al. Detection of acute right ventricular infarction by right precordial electrocardiography. Am J Cardiol 1982;50: 421–7. 122. Braat SH, Brugada P, de Zwaan C, Coenegracht JM, Wellens HJ. Value of electrocardiogram in diagnosing right ventricular involvement in patients with an acute inferior wall myocardial infarction. Br Heart J 1983;49:368 –72. 123. Lopez-Sendon J, Coma-Canella I, Alcasena S, Seoane J, Gamallo C. Electrocardiographic findings in acute right ventricular infarction: sensitivity and specificity of electrocardiographic alterations in right precordial leads V4R, V3R, V1, V2, and V3. J Am Coll Cardiol 1985;6:1273–9. 124. Sinha N, Ahuja RC, Saran RK, Jain GC. Clinical correlates of acute right ventricular infarction in acute inferior myocardial infarction. Int J Cardiol 1989;24:55– 61. 125. Yoshino H, Udagawa H, Shimizu H, et al. ST-segment elevation in right precordial leads implies depressed right ventricular function after acute inferior myocardial infarction [published correction appears in Am Heart J 1998;136:5]. Am Heart J 1998;135:689 –95. 126. Zalenski RJ, Rydman RJ, Sloan EP, et al. ST segment elevation and the prediction of hospital life-threatening complications: the role of right ventricular and posterior leads. J Electrocardiol 1998;31 Suppl:164 –71. 127. van Herpen G, Kors JA, Schijvenaars BJ. Are additional right precordial and left posterior ECG leads useful for the diagnosis of right ventricular infarct and posterior infarct? Also a plea for the revival of vectorcardiography. J Electrocardiol 1999;32 Suppl:51– 4. 21 128. Rosengarten P, Kelly AM, Dixon D. Does routine use of the 15-lead ECG improve the diagnosis of acute myocardial infarction in patients with chest pain? Emerg Med (Fremantle) 2001;13:190 –3. 129. Braunwald E, Antman EM, Beasley JW, et al. ACC/AHA guideline update for the management of patients with unstable angina and non–ST-segment elevation myocardial infarction—2002: summary article: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on the Management of Patients With Unstable Angina). Circulation 2002;106: 1893–900. 130. Chia BL, Tan HC, Yip JW, Ang TL. Electrocardiographic patterns in posterior chest leads (V7, V8, V9) in normal subjects. Am J Cardiol 2000;85:911–2. 131. Oraii S, Maleki M, Tavakolian AA, Eftekharzadeh M, Kamangar F, Mirhaji P. Prevalence and outcome of ST-segment elevation in posterior electrocardiographic leads during acute myocardial infarction. J Electrocardiol 1999;32:275– 8. 132. Ho KK, Ho SK. Use of the sinus P wave in diagnosing electrocardiographic limb lead misplacement not involving the right leg (ground) lead. J Electrocardiol 2001;34:161–71. 133. Heden B, Ohlsson M, Edenbrandt L, Rittner R, Pahlm O, Peterson C. Artificial neural networks for recognition of electrocardiographic lead reversal. Am J Cardiol 1995;75:929 –33. 134. Heden B, Ohlsson M, Holst H, et al. Detection of frequently overlooked electrocardiographic lead reversals using artificial neural networks. Am J Cardiol 1996;78:600–4. 135. Edenbrandt L, Rittner R. Recognition of lead reversals in pediatric electrocardiograms. Am J Cardiol 1998;82:1290 –2. 136. Kors JA, van Herpen G. Accurate automatic detection of electrode interchange in the electrocardiogram. Am J Cardiol 2001;88:396 –9. |