|
Регуляция произвольных движений. Корковомышечный путь. Для осуществления произвольного
Методика исследования После осмотра и пальпации мышц, иннервируемых добавочным нервом, больному предлагают повернуть голову сначала в одну, а затем в другую сторону, поднять плечи и руку выше горизонтального уровня, сблизить лопатки. Для выявления парезов мышц обследующий оказывает сопротивление в выполнении этих движений. С этой целью голову больного удерживают за подбородок, а на плечи укладывают руки обследующего. Во время поднимания плеч проводящий обследование удерживает их с помощью усилия.
Ввиду избыточного провисания руки на стороне поражения у больного, стоящего по стойке «смирно» с опущенными по швам руками, можно отметить, что рука на стороне, где отмечается недостаточность функции XI нерва, опущена ниже, чем на здоровой стороне. Если больному предложить вытянуть руки вперёд перед собой, чтобы ладони при этом касались друг друга, а пальцы были вытянуты, то концы пальцев на поражённой стороне будут выступать вперёд больше, чем на здоровой стороне. 36. Дополнительные методы исследования (ЭХО-энцефалография, ЭЭГ, КТ, МРТ, коротидная ангиография, пневмоэнцефало- и пневмомиелография). Эхоэнцефалоскопия (ЭхоЭС) или эхоэнцефалография (ЭхоЭГ) — диагностический ультразвуковой нейрофизиологический метод, позволяющий оценить наличие патологического объёмного процесса в веществе головного мозга. Открытие обычно связывают с именем Ларса Лекселла, который использовал этот метод в клинической практике в 1956 году. Описание метода
Эхосигналы при эхоэнцефалоскопии образуются на границах сред (костей черепа, твёрдой мозговой оболочки, ликвора, вещества головного мозга и патологических объёмных образований). Центральный, стабильный сигнал с наибольшей амплитудой (так называемое М-эхо) создают срединные анатомические структуры головного мозга, располагающиеся в сагиттальной плоскости (третий желудочек, эпифиз, большой серповидный отросток твёрдой мозговой оболочки и т. д.). Для оценки смещения срединных структур головного мозга измеряется расстояние между первым, начальным комплексом (импульсы от поверхностных структур головы) и сигналом с наибольшей амплитудой (М-эхо). В норме это расстояние при исследовании симметричных точек правой и левой сторон головы одинаково и составляет у взрослых 65—80 мм (в зависимости от размера головы), однако при наличии объёмного процесса в одном из полушарий головного мозга М-эхо смещается в противоположную сторону, что является признаком дислокации срединных структур. Электроэнцефалография У этого термина существуют и другие значения, см. Энцефалография.
Электроэнцефалография (ЭЭГ) (электро- + др.-греч. ενκεφαλος — «головной мозг» + γραφω — «пишу», изображать) — раздел электрофизиологии, изучающий закономерности суммарной электрической активности мозга, отводимой с поверхности кожи головы, а также метод записи таких потенциалов (формирования электроэнцефалограмм). Также ЭЭГ — неинвазивный метод исследования функционального состояния головного мозга путем регистрации его биоэлектрической активности. ЭЭГ — чувствительный метод исследования, он отражает малейшие изменения функции коры головного мозга и глубинных мозговых структур, обеспечивая миллисекундное временное разрешение, не доступное другим методам исследования мозговой активности, в частности ПЭТ и фМРТ. Электроэнцефалография дает возможность качественного и количественного анализа функционального состояния головного мозга и его реакций при действии раздражителей. Запись ЭЭГ широко применяется в диагностической и лечебной работе (особенно часто при эпилепсии), в анестезиологии, а также при изучении деятельности мозга, связанной с реализацией таких функций, как восприятие, память, адаптация и т. д. На электроэнцефалограммах заметна ритмичность электрической активности мозга. Различают целый ряд ритмов, называемых буквами греческого алфавита: Методика
Процесс регистрации электроэнцефалографии
Регистрация ЭЭГ производится прибором электроэнцефалограф через специальные электроды (наиболее распространенные мостиковые, чашечковые и игольчатые). В настоящее время чаще всего используется расположение электродов по международным системам «10—20 %» или «10—10 %». Каждый электрод подключен к усилителю. Для записи ЭЭГ может использоваться бумажная лента, или сигнал может преобразовываться с помощью АЦП и записываться в файл на компьютере. Наиболее распространена запись с частотой дискретизации 250 Гц. Запись потенциалов с каждого электрода осуществляется относительно нулевого потенциала референта, за который, как правило, принимается мочка уха или сосцевидный отросток височной кости (mastoid), расположенный позади уха и содержащий заполненные воздухом костные полости. Компьютерный томография Компью́терная томогра́фия — метод неразрушающего послойного исследования внутренней структуры объекта, был предложен в 1972 году Годфри Хаунсфилдом и Алланом Кормаком, удостоенными за эту разработку Нобелевской премии. Метод основан на измерении и сложной компьютерной обработке разности ослабления рентгеновского излучения различными по плотности тканями. Компьютерная томография (КТ) — в широком смысле, синоним термина томография (так как все современные томографические методы реализуются с помощью компьютерной техники); в узком смысле (в котором употребляется значительно чаще), синоним термина рентгеновская компьютерная томография, так как именно этот метод положил начало современной томографии. Рентгеновская компьютерная томография — томографический метод исследования внутренних органов человека с использованием рентгеновского излучения. Появление компьютерных томографов[править | править вики-текст]
Первые математические алгоритмы для КТ были разработаны в 1917 году австрийским математиком И. Радоном (см. преобразование Радона). Физической основой метода является экспоненциальный закон ослабления излучения, который справедлив для чисто поглощающих сред. В рентгеновском диапазоне излучения экспоненциальный закон выполняется с высокой степенью точности, поэтому разработанные математические алгоритмы были впервые применены именно для рентгеновской компьютерной томографии. В 1963 году американский физик А. Кормак повторно (но отличным от Радона способом) решил задачу томографического восстановления, а в 1969 году английский инженер-физик Г. Хаунсфилд из фирмы «EMI Ltd.» сконструировал «ЭМИ-сканер» (EMI-scanner) — первый компьютерный рентгеновский томограф, клинические испытания которого прошли в 1971 году, разработанный только для сканирования головы. Средства на разработку КТ были выделены фирмой EMI, в частности, благодаря высоким доходам, полученным от контракта с группой The Beatles[1]. В 1979 году «за разработку компьютерной томографии» Кормак и Хаунсфилд были удостоены Нобелевской премии по физиологии и медицине. Предпосылки метода в истории медицины[править | править вики-текст]
Изображения, полученные методом рентгеновской компьютерной томографии, имеют свои аналоги в истории изучения анатомии. В частности, Николай Иванович Пирогов разработал новый метод изучения взаиморасположения органов оперирующими хирургами, получивший название топографической анатомии. Сутью метода было изучение замороженных трупов, послойно разрезанных в различных анатомических плоскостях («анатомическая томография»). Пироговым был издан атлас под названием «Топографическая анатомия, иллюстрированная разрезами, проведёнными через замороженное тело человека в трёх направлениях». Фактически, изображения в атласе предвосхищали появление подобных изображений, полученных лучевыми томографическими методами исследования. Разумеется, современные способы получения послойных изображений имеют несравнимые преимущества: нетравматичность, позволяющая проводить прижизненную диагностику заболеваний; возможность аппаратного представления в различных анатомических плоскостях (проекциях) однократно полученных «сырых» КТ-данных, а также трёхмерной реконструкции; возможность не только оценивать размеры и взаиморасположение органов, но и детально изучать их структурные особенности и даже некоторые физиологические характеристики, основываясь на показателях рентгеновской плотности и их изменении при внутривенном контрастном усилении. В нейрохирургии до внедрения компьютерной томографии применялись предложенные в 1918 и 1919 гг. Уолтером Денди вентрикуло- и пневмоэнцефалография. Пневмоэнцефалография впервые позволила нейрохирургам проводить визуализацию внутричерепных новообразований с помощью рентгеновских лучей. Они проводились путём введения воздуха либо непосредственно в желудочковую систему мозга (вентрикулография) либо через поясничный прокол в субарахноидальное пространство (пневмоэнцефалография). Проведение вентрикулографии, предложенное Денди в 1918 г., имело свои ограничения, так как требовало наложения с диагностической целью фрезевого отверстия и вентрикулопункции. Пневмоэнцефалография, описанная в 1919 г., была менее инвазивным методом и широко использовалась для диагностики внутричерепных образований. Однако, как вентрикуло-, так и пневмоэнцефалография представляли из себя инвазивные методы диагностики, которые сопровождались появлением у больных интенсивных головных болей, рвоты, несли целый ряд рисков. Поэтому с внедрением компьютерной томографии они перестали применяться в клинической практике. Эти методы были заменены более безопасными КТ-вентрикулографией и КТ-цистернографией, применяемыми значительно реже, по строгим показаниям[2], наряду с широко используемой бесконтрастной компьютерной томографией головного мозга. Шкала Хаунсфилда[править | править вики-текст]
Основная статья: Шкала Хаунсфилда
Для визуальной и количественной оценки плотности визуализируемых методом компьютерной томографии структур используется шкала ослабления рентгеновского излучения, получившая название шкалы Хаунсфилда (её визуальным отражением на мониторе аппарата является чёрно-белый спектр изображения). Диапазон единиц шкалы («денситометрических показателей, англ. Hounsfield units»), соответствующих степени ослабления рентгеновского излучения анатомическими структурами организма, составляет от −1024 до +3071, т. е. 4096 чисел ослабления. Средний показатель в шкале Хаунсфилда (0 HU) соответствует плотности воды, отрицательные величины шкалы соответствуют воздуху и жировой ткани, положительные — мягким тканям, костной ткани и более плотному веществу (металл). В практическом применении измеренные показатели ослабления могут несколько отличаться на разных аппаратах. Следует отметить, что «рентгеновская плотность» — усредненное значение поглощения тканью излучения; при оценке сложной анатомо-гистологической структуры измерение её «рентгеновской плотности» не всегда позволяет с точностью утверждать, какая ткань визуализируется (например, насыщенные жиром мягкие ткани имеют плотность, соответствующую плотности воды). Изменение окна изображения[править | править вики-текст]
Обычный компьютерный монитор способен отображать до 256 оттенков серого цвета, некоторые специализированные медицинские аппараты способны показывать до 1024 оттенков. В связи со значительной шириной шкалы Хаунсфилда и неспособностью существующих мониторов отразить весь её диапазон в черно-белом спектре, используется программный перерасчет серого градиента в зависимости от интересуемого интервала шкалы. Черно-белый спектр изображения можно применять как в широком диапазоне («окне») денситометрических показателей (визуализируются структуры всех плотностей, однако невозможно различить структуры, близкие по плотности), так и в более-менее узком с заданным уровнем его центра и ширины («легочное окно», «мягкотканное окно» и т. д.; в этом случае теряется информация о структурах, плотность которых выходит за пределы диапазона, однако хорошо различимы структуры, близкие по плотности). Проще говоря, изменение центра окна и его ширины можно сравнить с изменением яркости и контрастности изображения соответственно. Спиральная компьютерная томография[править | править вики-текст]
Спиральная КТ используется в клинической практике с 1988 года, когда компания Siemens Medical Solutions представила первый спиральный компьютерный томограф. Спиральное сканирование заключается в одновременном выполнении двух действий: непрерывного вращения источника — рентгеновской трубки, генерирующей излучение, вокруг тела пациента, и непрерывного поступательного движения стола с пациентом вдоль продольной оси сканирования z через апертуру гентри. В этом случае траектория движения рентгеновской трубки, относительно оси z — направления движения стола с телом пациента, примет форму спирали. В отличие от последовательной КТ скорость движения стола с телом пациента может принимать произвольные значения, определяемые целями исследования. Чем выше скорость движения стола, тем больше протяженность области сканирования. Важно то, что длина пути стола за один оборот рентгеновской трубки может быть в 1,5–2 раза больше толщины томографического слоя без ухудшения пространственного разрешения изображения. Технология спирального сканирования позволила значительно сократить время, затрачиваемое на КТ-исследование и существенно уменьшить лучевую нагрузку на пациента. Многослойная компьютерная томография (МСКТ)[править | править вики-текст] Многослойная («мультиспиральная») компьютерная томография с внутривенным контрастным усилением и трёхмерной реконструкцией изображения.
Многослойная («мультиспиральная», «мультисрезовая» компьютерная томография — МСКТ) была впервые представлена компанией Elscint Co. в 1992 году. Принципиальное отличие мсКТ томографов от спиральных томографов предыдущих поколений в том, что по окружности гентри расположены не один, а два и более ряда детекторов. Для того, чтобы рентгеновское излучение могло одновременно приниматься детекторами, расположенными на разных рядах, была разработана новая — объёмная геометрическая форма пучка. В 1992 году появились первые двухсрезовые (двухспиральные) МСКТ томографы с двумя рядами детекторов, а в 1998 году — четырёхсрезовые (четырёхспиральные), с четырьмя рядами детекторов соответственно. Кроме вышеотмеченных особенностей, было увеличено количество оборотов рентгеновской трубки с одного до двух в секунду. Таким образом, четырёхспиральные мсКТ томографы пятого поколения на сегодняшний день в восемь раз быстрее, чем обычные спиральные КТ томографы четвертого поколения. В 2004—2005 годах были представлены 32-, 64- и 128-срезовые МСКТ томографы, в том числе — с двумя рентгеновскими трубками. Сегодня же в некоторых клиниках уже имеются [1] 320-срезовые компьютерные томографы. Эти томографы, впервые представленные в 2007 году компанией Toshiba, являются новым витком эволюции рентгеновской компьютерной томографии. Они позволяют не только получать изображения, но и дают возможность наблюдать почти что «в реальном» времени физиологические процессы, происходящие в головном мозге и в сердце [2]! Особенностью подобной системы является возможность сканирования целого органа (сердце, суставы, головной мозг и т.д.) за один оборот рентгеновской трубки, что значительно сокращает время обследования, а также возможность сканировать сердце даже у пациентов, страдающих аритмиями. Несколько 320-срезовых сканеров уже установлены и функционируют в России. Преимущества МСКТ перед обычной спиральной КТ[править | править вики-текст]
улучшение временного разрешения
улучшение пространственного разрешения вдоль продольной оси z
увеличение скорости сканирования
улучшение контрастного разрешения
увеличение отношения сигнал/шум
эффективное использование рентгеновской трубки
большая зона анатомического покрытия
уменьшение лучевой нагрузки на пациента
Все эти факторы значительно повышают скорость и информативность исследований. Основным недостатком метода остается высокая лучевая нагрузка на пациента, несмотря на то, что за время существования КТ её удалось значительно снизить. Улучшение временного разрешения достигается за счёт уменьшения времени исследования и количества артефактов из-за непроизвольного движения внутренних органов и пульсации крупных сосудов.
Улучшение пространственного разрешения вдоль продольной оси z, связано с использованием тонких (1–1,5 мм) срезов и очень тонких, субмиллиметровых (0,5 мм) срезов. Чтобы реализовать эту возможность, разработаны два типа расположения массива детекторов в МСК томографах:
матричные детекторы (matrix detectors), имеющие одинаковую ширину вдоль продольной оси z;
адаптивные детекторы (adaptive detectors), имеющие неодинаковую ширину вдоль продольной оси z.
Преимущество матричного массива детекторов заключается в том, что количество детекторов в ряду можно легко увеличить для получения большего количества срезов за один оборот рентгеновской трубки. Так как в адаптивном массиве детекторов меньше количество самих элементов, то меньше и число зазоров между ними, что дает снижение лучевой нагрузки на пациента и уменьшение электронного шума. Поэтому три из четырёх мировых производителей МСК томографов выбрали именно этот тип.
Все вышеотмеченные нововведения не только повышают пространственное разрешение, но благодаря специально разработанным алгоритмам реконструкции позволяют значительно уменьшить количество и размеры артефактов (посторонних элементов) КТ-изображений. Основным преимуществом МСКТ по сравнению с односрезовой СКТ является возможность получения изотропного изображения при сканировании с субмиллиметровой толщиной среза (0,5 мм). Изотропное изображение возможно получить, если грани вокселя матрицы изображения равны, то есть воксель принимает форму куба. В этом случае пространственные разрешения в поперечной плоскости x-y и вдоль продольной оси z становятся одинаковыми. Увеличение скорости сканирования достигается уменьшением времени оборота рентгеновской трубки, по сравнению с обычной спиральной КТ, в два раза — до 0,45–0,50 с.
Улучшение контрастного разрешения достигается вследствие увеличения дозы и скорости введения контрастных средств при проведении ангиографии или стандартных КТ-исследований, требующих контрастного усиления. Различие между артериальной и венозной фазой введения контрастного средства прослеживается более чётко.
Увеличение отношения сигнал/шум достигнуто благодаря конструктивным особенностям исполнения новых детекторов и используемых при этом материалов; улучшению качества исполнения электронных компонентов и плат; увеличению тока накала рентгеновской трубки до 400 мА при стандартных исследованиях или исследованиях тучных пациентов.
Эффективное использование рентгеновской трубки достигается за счёт меньшего времени работы трубки при стандартном исследовании. Конструкция рентгеновских трубок претерпела изменения для обеспечения лучшей устойчивости при больших центробежных силах, возникающих при вращении за время, равное или менее 0,5 с. Используются генераторы большей мощности (до 100 кВт). Конструктивные особенности исполнения рентгеновских трубок, лучшее охлаждение анода и повышение его теплоёмкости до 8 000 000 единиц также позволяют продлить срок службы трубок.
Зона анатомического покрытия увеличена благодаря одновременной реконструкции нескольких срезов полученных за время одного оборота рентгеновской трубки. Для МСКТ установки зона анатомического покрытия зависит от количества каналов данных, шага спирали, толщины томографического слоя, времени сканирования и времени вращения рентгеновской трубки. Зона анатомического покрытия может быть в несколько раз больше за одно и то же время сканирования по сравнению с обычным спиральным компьютерным томографом.
Лучевая нагрузка при многослойном спиральном КТ-исследовании при сопоставимых объёмах диагностической информации меньше на 30 % по сравнению с обычным спиральным КТ-исследованием. Для этого улучшают фильтрацию спектра рентгеновского излучения и производят оптимизацию массива детекторов. Разработаны алгоритмы, позволяющие в реальном масштабе времени автоматически уменьшать ток и напряжение на рентгеновской трубке в зависимости от исследуемого органа, размеров и возраста каждого пациента.
Компьютерная томография с двумя источниками излучения[править | править вики-текст]
DSCT — Dual Source Computed Tomography. Русскоязычной аббревиатуры в настоящее время нет. В 2005 году компанией «Сименс медикал солюшнз» представлен первый аппарат с двумя источниками рентгеновского излучения. Теоретические предпосылки к его созданию были еще в 1979 году, но технически его реализация в тот момент была невозможна. По сути он является одним из логичных продолжений технологии МСКТ. Дело в том, что при исследовании сердца (КТ-коронарография) необходимо получение изображений объектов находящихся в постоянном и быстром движении, что требует очень короткого периода сканирования. В МСКТ это достигалось синхронизацией ЭКГ и обычного исследования при быстром вращении трубки. Но минимальный промежуток времени, требуемый для регистрации относительно неподвижного среза для МСКТ при времени обращения трубки, равном 0,33 с (≈3 оборота в секунду), равен 173 мс, то есть времени полуоборота трубки. Такое временное разрешение вполне достаточно для нормальной частоты сердечных сокращений (в исследованиях показана эффективность при частотах менее 65 ударов в минуту и около 80, с промежутком малой эффективности между этими показателями и при больших значениях). Некоторое время пытались увеличить скорость вращения трубки в гентри томографа. В настоящее время достигнут предел технических возможностей для ее увеличения, так как при обороте трубки в 0,33 с ее вес возрастает в 28 раз (перегрузки 28 g). Чтобы получить временное разрешение менее 100 мс, требуется преодоление перегрузок более чем 75 g. Использование же двух рентгеновских трубок, расположенных под углом 90°, дает временное разрешение, равное четверти периода обращения трубки (83 мс при обороте за 0,33 с). Это позволило получать изображения сердца независимо от частоты сокращений. Также такой аппарат имеет еще одно значительное преимущество: каждая трубка может работать в своем режиме (при различных значениях напряжения и тока, кВ и мА соответственно). Это позволяет лучше дифференцировать на изображении близкорасположенные объекты различных плотностей. Особенно это важно при контрастировании сосудов и образований, находящихся близко от костей или металлоконструкций. Данный эффект основан на различном поглощении излучения при изменении его параметров у смеси кровь + йодсодержащее контрастное вещество при неизменности этого параметра у гидроксиапатита (основа кости) или металлов. В остальном аппараты являются обычными МСКТ аппаратами и обладают всеми их преимуществами. Массовое внедрение новых технологий и компьютерных вычислений позволили внедрить в практику такие методы, как виртуальная эндоскопия, в основе которых лежит РКТ и МРТ. Контрастное усиление[править | править вики-текст]
Для улучшения дифференцировки органов друг от друга, а также нормальных и патологических структур, используются различные методики контрастного усиления (чаще всего, с применением йодсодержащих контрастных препаратов). Двумя основными разновидностями введения контрастного препарата являются пероральное (пациент с определенным режимом выпивает раствор препарата) и внутривенное (производится медицинским персоналом). Главной целью первого метода является контрастирование полых органов желудочно-кишечного тракта; второй метод позволяет оценить характер накопления контрастного препарата тканями и органами через кровеносную систему. Методики внутривенного контрастного усиления во многих случаях позволяют уточнить характер выявленных патологических изменений (в том числе достаточно точно указать наличие опухолей, вплоть до предположения их гистологической структуры) на фоне окружающих их мягких тканей, а также визуализировать изменения, не выявляемые при обычном («нативном») исследовании. В свою очередь, внутривенное контрастирование можно проводить двумя способами: «ручное» внутривенное контрастирование и болюсное контрастирование. При первом способе контраст вводится вручную рентгенлаборантом или процедурной медсестрой, время и скорость введения не регулируются, исследование начинается после введения контрастного вещества. Этот способ применяется на «медленных» аппаратах первых поколений, при МСКТ «ручное» введение контрастного препарата уже не соответствует значительно возросшим возможностям метода. При болюсном контрастном усилении контрастный препарат вводится внутривенно шприцем-инжектором с установленными скоростью и временем подачи вещества. Цель болюсного контрастного усиления — разграничение фаз контрастирования. Время сканирования различается на разных аппаратах, при разных скоростях введения контрастного препарата и у разных пациентов; в среднем при скорости введения препарата 4–5 мл/сек сканирование начинается примерно через 20–30 секунд после начала введения инжектором контраста, при этом визуализируется наполнение артерий (артериальная фаза контрастирования). Через 40–60 секунд аппарат повторно сканирует эту же зону для выделения портально-венозной фазы, в которую визуализируется контрастирование вен. Также выделяют отсроченную фазу (180 секунд после начала введения), при которой наблюдается выведение контрастного препарата через мочевыделительную систему. КТ-ангиография[править | править вики-текст]
CT-Angiografie-Haende.jpg
Основная статья: КТ-ангиография
КТ-ангиография позволяет получить послойную серию изображений кровеносных сосудов; на основе полученных данных посредством компьютерной постобработки с 3D-реконструкцией строится трёхмерная модель кровеносной системы. Спиральная КТ-ангиография — одно из последних достижений рентгеновской компьютерной томографии. Исследование проводится в амбулаторных условиях. В локтевую вену вводится йодсодержащий контрастный препарат в объеме 100 мл. В момент введения контрастного вещества делают серию сканирований исследуемого участка. КТ-перфузия[править | править вики-текст]
Метод, позволяющий оценить прохождение крови через ткани организма, в частности: перфузию головного мозга
перфузию печени
Показания к компьютерной томографии[править | править вики-текст]
Компьютерная томография широко используется в медицине для нескольких целей: Как скрининговый тест — при следующих состояниях:
Головная боль
Травма головы, не сопровождающаяся потерей сознания
Обморок
Исключение рака легких. В случае использования компьютерной томографии для скрининга, исследование делается в плановом порядке.
Для диагностики по экстренным показаниям — экстренная компьютерная томография
Тяжелые травмы
Подозрение на кровоизлияние в мозг
Подозрение на повреждение сосуда (например, расслаивающая аневризма аорты)
Подозрение на некоторые другие острые повреждения полых и паренхиматозных органов (осложнения как основного заболевания, так и в результате проводимого лечения)
Компьютерная томография для плановой диагностики
Большинство КТ исследований делается в плановом порядке, по направлению врача, для окончательного подтверждения диагноза. Как правило, перед проведением компьютерной томографии, делаются более простые исследования — рентген, УЗИ, анализы и т. д.
Для контроля результатов лечения.
Для проведения лечебных и диагностических манипуляций, например пункция под контролем компьютерной томографии и др.
Преоперативные изображения, полученные с помощью компьютерной томографии, используются в гибридных операционных во время хирургических операций.
Некоторые абсолютные и относительные противопоказания[править | править вики-текст]
Без контраста Беременность
Масса тела более максимальной для прибора
С контрастом Наличие аллергии на контрастный препарат
Почечная недостаточность
Тяжёлый сахарный диабет
Беременность (тератогенное воздействие рентгеновского излучения)
Тяжёлое общее состояние пациента
Масса тела более максимальной для прибора
Заболевания щитовидной железы
Миеломная болезнь Магнитно-резонансная томография Магнитно-резонансная томография (МРТ, MRT, MRI[1]) — томографический метод исследования внутренних органов и тканей с использованием физического явления ядерного магнитного резонанса. Метод основан на измерении электромагнитного отклика атомных ядер, чаще всего ядер атомов водорода[2], а именно на возбуждении их определённой комбинацией электромагнитных волн в постоянном магнитном поле высокой напряжённости. Метод[править | править вики-текст] Аппарат для магнитно-резонансной томографии.
Метод ядерного магнитного резонанса позволяет изучать организм человека на основе насыщенности тканей организма водородом и особенностей их магнитных свойств, связанных с нахождением в окружении разных атомов и молекул. Ядро водорода состоит из одного протона, который имеет магнитный момент (спин) и меняет свою пространственную ориентацию в мощном магнитном поле, а также при воздействии дополнительных полей, называемых градиентными, и внешних радиочастотных импульсов, подаваемых на специфической для протона при данном магнитном поле резонансной частоте. На основе параметров протона (спинов) и их векторном направлении, которые могут находиться только в двух противоположных фазах, а также их привязанности к магнитному моменту протона можно установить, в каких именно тканях находится тот или иной атом водорода. (Иногда могут также использоваться МР-контрасты на базе гадолиния или оксидов железа, которые изменяют отклик протонов[3].) Если поместить протон во внешнее магнитное поле, то его магнитный момент будет либо сонаправлен, либо противоположно направлен магнитному полю, причём во втором случае его энергия будет выше. При воздействии на исследуемую область электромагнитным излучением определённой частоты часть протонов поменяют свой магнитный момент на противоположный, а потом вернутся в исходное положение. При этом системой сбора данных томографа регистрируется выделение энергии во время релаксации предварительно возбужденных протонов. Первые томографы имели индукцию магнитного поля 0,005 Тл, однако качество изображений, полученных на них, было низким. Современные томографы имеют мощные источники сильного магнитного поля. В качестве таких источников применяются как электромагниты (обычно до 1-3 Тл, в некоторых случаях до 9,4 Тл), так и постоянные магниты (до 0,7 Тл). При этом, так как поле должно быть весьма сильным, применяются сверхпроводящиие электромагниты, работающие в жидком гелии, а постоянные магниты пригодны только очень мощные, неодимовые. Магнитно-резонансный «отклик» тканей в МР-томографах на постоянных магнитах слабее, чем у электромагнитных, поэтому область применения постоянных магнитов ограничена. Однако, постоянные магниты могут быть так называемой «открытой» конфигурации, что позволяет проводить исследования в движении, в положении стоя, а также осуществлять доступ врачей к пациенту во время исследования и проведение манипуляций (диагностических, лечебных) под контролем МРТ — так называемая интервенционная МРТ. Для определения расположения сигнала в пространстве, помимо постоянного магнита в МР-томографе, которым может быть электромагнит, либо постоянный магнит, используются градиентные катушки, добавляющие к общему однородному магнитному полю градиентное магнитное возмущение. Это обеспечивает локализацию сигнала ядерного магнитного резонанса и точное соотношение исследуемой области и полученных данных. Действие градиента, обеспечивающего выбор среза, обеспечивает селективное возбуждение протонов именно в нужной области. Мощность и скорость действия градиентных усилителей относится к одним из наиболее важных показателей магнитно-резонансного томографа. От них во многом зависит быстродействие, разрешающая способность и соотношение сигнал/шум.
Наблюдение за работой сердца в реальном времени с применением технологий МРТ.
Современные технологии и внедрение компьютерной техники обусловили возникновение такого метода, как виртуальная эндоскопия, который позволяет выполнить трёхмерное моделирование структур, визуализированных посредством КТ или МРТ. Данный метод является информативным при невозможности провести эндоскопическое исследование, например при тяжёлой патологии сердечно-сосудистой и дыхательной систем. Метод виртуальной эндоскопии нашёл применение в ангиологии, онкологии, урологии и других областях медицины. МР-диффузия[править | править вики-текст]
МР-диффузия — метод, позволяющий определять движение внутриклеточных молекул воды в тканях. Диффузионная спектральная томография[править | править вики-текст]
Диффузионная спектральная томография — метод, основанный на магнитно-резонансной томографии, позволяющий изучать активные нейронные связи. Преимущественное применение при диагностике острого нарушения мозгового кровообращения, по ишемическому типу, в острейшей и острой стадиях. МР-перфузия
Метод позволяющий оценить прохождение крови через ткани организма. В частности: Прохождение крови через ткани мозга
Прохождение крови через ткани печени
Метод позволяет определить степень ишемии головного мозга и других органов. МР-спектроскопия[править | править вики-текст]
Магнитно-резонансная спектроскопия (МРС) — метод позволяющий определить биохимические изменения тканей при различных заболеваниях. МР — спектры отражают процессы метаболизма. Нарушения метаболизма возникают как правило до клинических проявлений заболевания, поэтому на основе данных МР спектроскопии — можно диагностировать заболевания на более ранних этапах развития. Виды МР спектроскопии МР спектроскопия внутренних органов
МР спектроскопия биологических жидкостей
МР-ангиография[править | править вики-текст]
Основная статья: Магнитно-резонансная ангиография
Angeo2.jpg
Магнитно-резонансная ангиография (МРА) — метод получения изображения сосудов при помощи магнитно-резонансного томографа. Исследование проводится на томографах с величиной индукции магнитного поля не менее 0,3 (GE Brivo MR235) Тесла. Метод позволяет оценивать как анатомические, так и функциональные особенности кровотока. МРА основана на отличии сигнала подвижной ткани (крови) от окружающих неподвижных тканей, что позволяет получать изображения сосудов без использования каких-либо рентгеноконтрастных средств. Для получения более чёткого изображения применяются особые контрастные вещества на основе парамагнетиков (гадолиний). Функциональная МРТ[править | править вики-текст]
Основная статья: Функциональная магнитно-резонансная томография
Функциональная МРТ (фМРТ) — метод картирования коры головного мозга, позволяющий определять индивидуальное местоположение и особенности областей мозга, отвечающих за движение, речь, зрение, память и другие функции, индивидуально для каждого пациента. Суть метода заключается в том, что при работе определенных отделов мозга кровоток в них усиливается. В процессе проведения ФМРТ больному предлагается выполнение определенных заданий, участки мозга с повышенным кровотоком регистрируются, и их изображение накладывается на обычную МРТ мозга. МРТ позвоночника с вертикализацией (осевой нагрузкой)[править | править вики-текст]
Сравнительно недавно появилась инновационная методика этого исследования пояснично-крестцового отдела позвоночника - МР-томография с вертикализацией. Суть исследования состоит в том, что сначала проводится традиционное МРТ-исследование позвоночника в положении лежа, а затем производится вертикализация (подъем) пациента вместе со столом томографа и магнитом. При этом на позвоночник начинает действовать сила тяжести, а соседние позвонки могут сместиться друг относительно друга и грыжа межпозвонкового диска становится более выраженной. Также этот метод исследования применяется нейрохирургами для определения уровня нестабильности позвоночника с целью обеспечения максимально надежной фиксации. В России пока это исследование выполняется в единственном месте Question book-4.svg
В этом разделе не хватает ссылок на источники информации.
Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.
Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.
Эта отметка установлена 22 июля 2014.
. Измерение температуры с помощью МРТ[править | править вики-текст]
МРТ термометрия — метод, основанный на получении резонанса от протонов водорода исследуемого объекта. Разница резонансных частот дает информацию об абсолютной температуре тканей. Частота испускаемых радиоволн изменяется с нагреванием или охлаждением исследуемых тканей. Эта методика увеличивает информативность МРТ исследований и позволяет повысить эффективность лечебных процедур, основанных на селективном нагревании тканей. Локальное нагревание тканей используется в лечении опухолей различного происхождения.[4] Особенности применения медицинского оборудования в помещениях, где проводится МРТ[править | править вики-текст]
Сочетание интенсивного магнитного поля, применяемого при МРТ сканировании, и интенсивного радиочастотного поля предъявляет экстремальные требования к медицинскому оборудованию, используемому во время исследований. Оно должно иметь специальную конструкцию и может иметь дополнительные ограничения по использованию вблизи установки МРТ. Противопоказания[править | править вики-текст]
Существуют как относительные противопоказания, при которых проведение исследования возможно при определённых условиях, так и абсолютные, при которых исследование недопустимо. Абсолютные противопоказания[править | править вики-текст]
установленный кардиостимулятор (изменения магнитного поля могут имитировать сердечный ритм).
ферромагнитные или электронные имплантаты среднего уха.
большие металлические имплантаты, ферромагнитные осколки.
ферромагнитные аппараты Илизарова
Относительные противопоказания[править | править вики-текст]
инсулиновые насосы[5]
нервные стимуляторы
неферромагнитные имплантаты внутреннего уха,
протезы клапанов сердца (в высоких полях, при подозрении на дисфункцию)
кровоостанавливающие клипсы (кроме сосудов мозга),
декомпенсированная сердечная недостаточность,
первый триместр беременности (на данный момент собрано недостаточное количество доказательств отсутствия тератогенного эффекта магнитного поля, однако метод предпочтительнее рентгенографии и компьютерной томографии)
клаустрофобия (панические приступы во время нахождения в тоннеле аппарата могут не позволить провести исследование)
необходимость в физиологическом мониторинге
неадекватность пациента
тяжёлое/крайне тяжелое состояние пациента по основному/сопутствующему заболеванию
наличие татуировок, выполненных с помощью красителей с содержанием металлических соединений (могут возникать ожоги[6]).
Широко используемый в протезировании титан не является ферромагнетиком и практически безопасен при МРТ; исключение — наличие татуировок, выполненных с помощью красителей на основе соединений титана (например, на основе диоксида титана). Дополнительным противопоказанием для МРТ является наличие кохлеарных имплантатов — протезов внутреннего уха. МРТ противопоказана при некоторых видах протезов внутреннего уха, так как в кохлеарном имплантате есть металлические части, которые содержат ферромагнитные материалы. Каротидная ангиография
Большинство заболеваний головного мозга связаны с нарушением кровообращения или формированием опухолей ткани. Частично такие состояния диагностируются с помощью компьютерной томографии, однако наиболее точной является каротидная ангиография, которая позволяет визуализировать нарушения кровотока в сосудах, наличия препятствий или тромбов, внутричерепное кровоизлияние и опухоли. Суть методики заключается во введении в сосудистое русло через наружную сонную артерию контрастного вещества с последующей рентгенографией. Недостатками этого метода диагностики являются — инвазивность (прокол артерии), рентгенологическая лучевая нагрузка и возможность развития аллергической реакции на контрастное вещество. Показания к проведению каротидной ангиографии Показаниями к проведению каротидной ангиографии являются состояния, при которых необходимо оценить состояние сосудистого русла и кровотока головного мозга:
церебральный атеросклероз — заболевание сосудов, при котором в их стенках откладывается холестерин, что уменьшает их просвет и кровоток в головном мозгу; ишемический инсульт — состояние, при котором одна из артерий головного мозга закупоривается тромбом, месторасположение которого позволяет определить каротидная ангиография; геморрагический инсульт — острое нарушение внутримозгового кровообращения в результате повреждения измененного сосуда, каротидная ангиография информирует о локализации повреждения, калибре поврежденной артерии и выраженности кровотечения; закрытые внутричерепные травмы — часто протекают с внутричерепным кровоизлиянием, точную диагностику которого можно провести с помощью каротидной ангиографии; опухоли головного мозга — это исследование информирует об усилении кровотока в месте опухоли, даже при ее незначительных размерах.
Это важно! Важным моментом для каротидной ангиографии является то, что она указывает на месторасположения патологического измененного сосуда, что позволяет провести в случае необходимости хирургическое вмешательство с адекватным доступом.
|
|
|