Главная страница

г9 класс поурочные. Решение задач Цели


Скачать 1.53 Mb.
НазваниеРешение задач Цели
Дата03.06.2022
Размер1.53 Mb.
Формат файлаdoc
Имя файлаг9 класс поурочные .doc
ТипУрок
#567420
страница2 из 13
1   2   3   4   5   6   7   8   9   ...   13

II. Закрепление изученного материала.

1. Выполнить практические задания № 776 (б; г; д), 777.

2. Решить задачи № 779, 781 (а; в) на доске и в тетрадях.

Решение

Дано:

а)

в)

3. Решить задачу № 780 (б).

III. Итоги урока.

Домашнее задание: изучить материал пункта 83; ответить на вопросы 14–17, с. 214; решить задачи №№ 775, 776 (а, в, е), 781 (б), 780 (а).

Урок 6
Решение задач. Произведение вектора на число

Цели: закрепить изученный материал в ходе решения задач; развивать логическое мышление учащихся.

Ход урока

I. Устная работа.

По заранее заготовленным чертежам на доске устно решить задачи:

1. На рисунке 1 ABCD – параллелограмм, O – точка пересечения диагоналей. Выразите через векторы и векторы: а) б) где М – точка на стороне BC, такая, что МВ : MC = 3 : 2; в) где K – точка на стороне AD, такая, что АK : KD = 1 : 3; г) где N – точка на диагонали AC, такая, что ON = NC.

2. На рисунке 2 ABCD – трапеция, О – точка пересечения диагоналей, ВС || AD, AD = 2BC. Выразите через векторы и векторы: а) б)

Рис. 1 Рис. 2

II. Решение задач.

1. решить задачу № 782 на доске и в тетрадях.

Решение

Из треугольника ECD (рис. 3) найдем по правилу вычитания векторов:



тогда

Из треугольника ABG по правилу сложения векторов имеем

отсюда

2. решить задачу № 802 на доске и в тетрадях.

III. Проверочная самостоятельная работа.

Вариант I

1. Начертите два неколлинеарных вектора и так, что = 3 см, = 2 см. Постройте

2. Четырехугольник KMNP – параллелограмм. Выразите через векторы и векторы и , где А – точка на стороне PN, такая, что PA : AN = 2 : 1, B – середина отрезка MN.

Вариант II

1. Начертите два неколлинеарных вектора и так, что = 2 см, = 3 см. Постройте вектор

2. В параллелограмме ABCD точка M – середина стороны CD; N – точка на стороне AD, такая, что AN : ND = 1 : 2. Выразите векторы и через векторы и .

Вариант III
(для более подготовленных учащихся)

1. В треугольнике ABC угол C = 90°, AC = 3 см, BC = 4 см. Постройте вектор

2. В трапеции ABCD AB || CD, AB = 3CD. Выразите через векторы и векторы и , где M – середина стороны BC, а N – точка на стороне AB, такая, что AN : = 2 : 3.

IV. Итоги урока.

Домашнее задание: повторить материал пунктов 76–83; ответить на вопросы 1–17, с. 213–214 учебника; решить задачи №№ 783 и 804.

Урок 7
Применение векторов к решению задач

Цели: на конкретных примерах показать применение векторов при решении геометрических задач; развивать логическое мышление учащихся, учить решать задачи.

Ход урока

I. Анализ результатов самостоятельной работы.

1. Указать ошибки учащихся при выполнении работ.

2. Решить задачи, вызвавшие затруднения у учащихся.

II. Повторение изученного материала.

1. Ответить на вопросы на с. 213–214.

2. Вспомнить основные правила действий с векторами.

3. Решить задачи на доске и в тетрадях:

1) Упростите выражение

2) Найдите вектор из условия

4. Записать в тетрадях таблицу перевода с «геометрического» языка на «векторный»:

C – точка на прямой AB



MN || PQ



M – точка на отрезке AB, такая,
что AM : MB = л



ABCD – параллелограмм



ABCD – трапеция (AB || CD)



III. Работа по учебнику.

1. Векторы могут использоваться для решения геометрических задач. Рассмотрим вспомогательную задачу.

2. Разобрать решение задачи 1 на с. 208 учебника по рис. 264.

IV. Решение задач.

1. Решить задачу 2. Точки M и N – середины сторон AB и CD четырехугольника ABCD. Докажите, что

Решение

Пусть О – произвольная точка. Согласно задаче 1 из п. 84 имеем поэтому .

Примечание. Результат задачи 2 можно использовать при доказательстве теоремы о средней линии трапеции на следующем уроке.

2. Решить задачу 3. Точка С лежит на отрезке AB, причем АС : СВ =
=
2 : 3. Докажите, что для любой точки О справедливо равенство

Решение

По условию AC : CB = 2 : 3, поэтому

Но

Следовательно, откуда получается

Примечание. Задача 3 является частным случаем более общей задачи 806.

3. Решить задачу № 784 на доске и в тетрадях.

4. Решить задачу № 786 на доске и в тетрадях.

Решение

Так как точка А1 – середина стороны ВС, то .

Далее

5. При наличии времени решить задачу 4.

Точки K, L, M, N – середины сторон AB, BC, CD, DE пятиугольника ABCDE, а точки P и Q – середины отрезков KM и LN. Докажите, что PQ || AE и PQ = 1/4 AE.



Решение

Пусть О – произвольная точка. Согласно задаче 1 из п. 84

.

Аналогично, .

Из этих равенств следует, что

Отсюда следует, что PQ || AE и PQ = AE.

V. Итоги урока

Домашнее задание: повторить материал пунктов 76–84; разобрать решения задачи 2 из п. 84 и задачи № 788 и записать в тетрадь; решить задачу № 785.
Урок 8
Средняя линия трапеции

Цели: ввести понятия средней линии трапеции; доказать теорему о средней линии трапеции с помощью векторов; упражнять учащихся в решении задач.

Ход урока

I. Проверка усвоения учащимися материала.

1. Устно ответить на вопросы:

1) Какие векторы называются коллинеарными? Изобразите на рисунке сонаправленные векторы и и противоположно направленные векторы и .

2) Какой вектор называется произведением данного вектора на данное число?

3) Могут ли векторы и быть неколлинеарными?

4) Сформулируйте основные свойства умножения вектора на число.

2. Решить задачу на доске и в тетрадях по готовому чертежу:

Точки M и N лежат соответственно на сторонах AD и BC четырехугольника ABCD, причем AM : MD = BN : NC =
= 3 : 4.

Докажите, что середины отрезков AB, MN и CD лежат на одной прямой.

Решение

Пусть K1 – середина AB, K2 – середина MN, K3 – середина CD. Согласно задаче 2 из п. 84 имеем



. Из условия следует, что , поэтому .

Таким образом, векторы и коллинеарны, и, значит, точки K1, K2 и K3 лежат на одной прямой.

II. Объяснение нового материала.

1. Определение трапеции. Виды трапеций.

2. Определение средней линии трапеции.

3. Доказательство теоремы о средней линии трапеции (проводит сам учитель).

При доказательстве теоремы целесообразно использовать результат задачи 2, решенной на предыдущем уроке.

Доказательство можно оформить на доске и в тетрадях в виде следующей краткой записи:

Дано: ABCD – трапеция, AD || BC, M – середина стороны AB; N – середина стороны CD (рис. 266 учебника).

Доказать: MN || AD, MN = .

Доказательство

1) Согласно рассмотренной в классе задаче 1 .

2) Так как , то и, значит, MN || AD.

3) Так как , то = AD + BC, поэтому

MN = (AD + BC).

III. Закрепление изученного материала (решение задач).

1. Решить на доске и в тетрадях задачу № 793.

Решение

Пусть a и b – основания трапеции, тогда а + b = 48 – (13 + 15) =
= 20 (см); средняя линия MN = = 10 (см).

Ответ: 10 см.

2. Решить задачу № 795.

3. Решить задачу № 799 на доске и в тетрадях.

Решение

Пусть BK – перпендикуляр, проведенный к основанию AD данной трапеции.

Тогда KD = ADAK.

Но AK = , поэтому KD =
= AD – , то есть



отрезок KD равен средней линии трапеции. Значит, средняя линия трапеции равна 7 см.

Ответ: 7 см.

IV. Проверочная самостоятельная работа.

Вариант I

Точка K делит отрезок MN в отношении MK : KN = 3 : 2. Выразите вектор через векторы и , где A – произвольная точка.

Вариант II

Точка A делит отрезок EF в отношении EA : AF = 2 : 5. Выразите вектор через векторы и , где K – произвольная точка.

V. Итоги урока.

Домашнее задание: изучить материал пункта 85; ответить на вопросы 18–20, с. 214 учебника; решить задачи №№ 787, 794, 796.

Основные требования к учащимся:

В результате изучения параграфа учащиеся должны знать, какой вектор называется произведением вектора на число; уметь формулировать свойства умножения вектора на число; знать, какой отрезок называется средней линией трапеции; уметь формулировать и доказывать теорему о средней линии трапеции; уметь решать задачи типа №№ 782–787; 793–799.

МЕТОД КООРДИНАТ (10 часов)
Урок 1
Разложение вектора по двум данным
неколлинеарным векторам


Цели: доказать лемму о коллинеарных векторах и теорему о разложении вектора по двум неколлинеарным векторам и закрепить их знание в ходе решения задач.

Ход урока

I. Анализ результатов самостоятельной работы.

II. Устная работа.

1. Устно решить задачи по заранее заготовленному чертежу на доске:

Дан параллелограмм ABCD с диагоналями AC и BD, пересекающимися в точке О, а также отрезки MP и NQ, соединяющие соответственно середины сторон AB и CD, BC и AD. Требуется выразить:

1) вектор через вектор ;

2) вектор через вектор ;

3) вектор через вектор ;

4) вектор через вектор .

2. Вопрос учащимся:

можно ли для любой пары коллинеарных векторов подобрать такое число, что один из векторов будет равен произведению второго вектора на это число?

III. Изучение нового материала.

1. Формулировка леммы о коллинеарных векторах. Для понимания учащимися формулировки леммы полезно обсудить, во-первых, почему важно условие и, во-вторых, будет ли верно утверждение, если рассматривать произвольные (в том числе и неколлинеарные) ненулевые векторы.

2. Доказательство леммы.

3. Решить задачу по рисунку параллелограмма ABCD на доске (тем самым подвести учащихся к мысли о возможности выражения вектора через два данных неколлинеарных вектора):

Точки M и Q – середины сторон AB и AD параллелограмма ABCD. Выразите:

1) вектор через векторы и ;

2) вектор через векторы и ;

3) вектор через векторы и ;

4) вектор через векторы и .

4. Рассмотреть теорему о разложении вектора по двум данным неколлинеарным векторам, в ходе ее доказательства полезно обратить внимание на роль леммы в доказательстве.

IV. Закрепление изученного материала (решение задач).

1. Решить задачи № 911 (а, б); № 912 (б, в).

2. Решить задачи № 915 (по готовому чертежу) и № 916 (а, б).

V. Итоги урока.

Задание на дом: изучить материал пункта 86; решить задачи №№ 911 (в, г), 912 (ж, е, з), 916 (в, г).

Урок 2
Координаты вектора

Цели: ввести понятие координат вектора и рассмотреть правила действий над векторами с заданными координатами.

Ход урока

I. Проверка домашнего задания.

1. Устно решить задачи:

1) назвать числа х и у, удовлетворяющие равенству: ; ;

2) задача № 913.

2. На доске двое учащихся решают задачи №№ 911 (в) и 912 (и, к).

II. Изучение нового материала.

1. Напомнить задание прямоугольной системы координат и начертить ее.

2. Ввести координатные векторы и (рис. 275).

3. Нулевой вектор можно представить в виде ; его координаты равны нулю: (0; 0).

4. Координаты равных векторов соответственно равны.

5. Рассмотреть правила, позволяющие по координатам векторов находить координаты их суммы, разности и произведения вектора на число (доказательства указанных правил учащиеся могут рассмотреть самостоятельно).

6. Записать в тетрадях правила:

и – данные векторы

1) ;

2) ;

3) .

III. Закрепление изученного материала (решение задач).

1. Решить задачу № 917 на доске и в тетрадях.

2. Устно по рисунку 276 решить задачу № 918.

3. Решить задачу № 919 (самостоятельно).

4. Решить задачу № 920 (а, в) на доске и в тетрадях.

5. Устно решить задачи № 922–925, используя правила, записанные в тетрадях.

6. Записать утверждение задачи № 927 без доказательства:

1) Если два вектора коллинеарны, то координаты одного вектора пропорциональны координатам другого: если коллинеарен вектору , то x1 : x2 = y1 : y2.

2) Если координаты одного вектора пропорциональны координатам другого вектора, то эти векторы коллинеарны.

7. Решить задачу № 928.

Решение

Используем условие коллинеарности векторов: .

1) (3; 7) и (6; 14), так как ;

2) (–2; 1) и (2; –1), так как .

IV. Самостоятельная работа контролирующего характера.

Вариант I

Решить задачи № 912 (а, г); № 920 (г); № 988 (а, б); № 921 (а, в);
№ 914 (а).

Вариант II

Решить задачи №№ 912 (в, д); 920 (д); 988 (в, г); 921 (б, г); 914 (б).

V. Итоги урока.

Домашнее здание: подготовиться к устному опросу по карточкам, повторить материал пунктов 76–87; ответить на вопросы 1–20, с. 213–214 и на вопросы 1–8, с. 249 учебника; решить задачи №№ 798, 795; 990 (а) (для векторов и ).

Урок 3
Связь между координатами вектора
и координатами его начала и конца.
Простейшие задачи в координатах


Цели: рассмотреть связь между координатами вектора и координатами его начала и конца; разобрать задачи о нахождении координат середины отрезка, о вычислении длины вектора по его координатам и нахождении расстояния между двумя точками.

Ход урока

I. Анализ результатов контрольной работы.

1. Указать ошибки, сделанные учащимися при выполнении работы.

2. Решить на доске задачи, вызвавшие затруднения у учащихся.
1   2   3   4   5   6   7   8   9   ...   13


написать администратору сайта