Главная страница
Навигация по странице:

  • Превращение моносахаридов в спирты.

  • 8.3. Синтез и распад олигосахаридов и полисахаридов.

  • Синтез полисахаридов

  • Синтез крахмала.

  • Распад крахмала.

  • Лекции биохимия 2. Резюме по модульной единице 4


    Скачать 2.84 Mb.
    НазваниеРезюме по модульной единице 4
    АнкорЛекции биохимия 2.doc
    Дата05.03.2018
    Размер2.84 Mb.
    Формат файлаdoc
    Имя файлаЛекции биохимия 2.doc
    ТипДокументы
    #16270
    страница13 из 14
    1   ...   6   7   8   9   10   11   12   13   14

    Взаимопревращения моносахаридов


    Конечный продукт цикла Кальвина фруктозо-6-фосфат путём изомеризации очень легко превращается в глюкозо-6-фосфат под действием фермента глюкозофосфатизомеразы:


    фруктозо-6-фосфат глюкозо-6-фосфат
    Вследствие того, что реакции изомеризации сопровождаются небольшим изменением свободной энергии, они в большинстве своём обратимы.

    Под действием фермента маннозофосфатизомеразы фруктозо-6-фосфат изомеризуется в маннозо-6-фосфат:



    фрукто-6-фосфат маннозо-6-фосфат
    В
    результате действия соответствующих мутаз, осуществляющих внутримолекулярный перенос фосфатной группы, из глюкозо-6-фосфата образуется глюкозо-1-фосфат, а из маннозо-6-фосфата – маннозо-1-фосфат:

    глюкозо-6-фосфат глюкозо-1-фосфат


    маннозо-6-фосфат маннозо-1-фосфат
    В нефотосинтезирующих клетках растений и у гетеротрофных организмов фруктозо-6-фосфат и глюкозо-6-фосфат включаются в реакции гликолиза или пентозофосфатного цикла. В ходе реакций гликолиза фосфорилированная гексоза расщепляется на две триозы – 3-фосфогли-цериновый альдегид и фосфодиоксиацетон, из которых при обращении реакций гликолиза может снова синтезироваться гексоза. В пентозофосфатном цикле образуется примерно такой же набор фосфорнокислых производных моносахаридов, как и в цикле Кальвина. Таким образом, мы видим, что в гликолитических реакциях осуществляются взаимные превращения гексоз и триоз на уровне их фосфорнокислых эфиров, а в пентозофосфатном цикле и цикле Кальвина происходят взаимные превращения фосфорилированных форм триоз, пентоз, эритрозы, глюкозы и фруктозы.

    Включение свободных моносахаридов в различные реакции их превращений осуществляется путем фосфорилирования. В качестве донора фосфатных групп для реакций фосфорилирования чаще всего используется АТФ. Ферменты, катализирующие перенос фосфатных групп от АТФ на моносахариды, как мы уже знаем, называют киназами.

    Фосфорилирование глюкозы и маннозы катализирует фермент гексокиназа с образованием глюкозо-6-фосфата и маннозо-6-фосфата.

    По аналогичному механизму фруктокиназа катализирует образование фруктозо-1-фосфата из фруктозы, а фермент галактокиназа синтезирует галактозо-1-фосфат из галактозы.

    Образование свободных моносахаридов из их фосфорилированных форм катализируют ферменты гидролитического типа – фосфатазы, которые отщепляют от фосфатов моносахаридов остатки фосфорной кислоты. Гидролиз глюкозо-6-фосфата происходит с участием глюкозо-6-фосфатазы, галактозо-1-фосфата – под действием галактозо-1-фосфатазы, фруктозо-6-фосфата – фруктозо-6-фосфатазы и т.д.


    глюкозо-6-фосфат глюкоза

    Значительно сложнее происходят взаимопревращения галактозы и других моносахаридов. В этих реакциях в качестве промежуточных продуктов образуются нуклеозиддифосфатпроизводные соответсвующих моносаха-ридов. На первом этапе таких превращений галактоза фосфорилируется с участием фермента галактокиназы, в результате образуется галактозо-1-фосфат:


    галактоза галактозо-1-фосфат

    Н
    а следующей стадии галактозо-1-фосфат взаимодействует с уридинтрифосфатом (УТФ). Эту реакцию катализирует фермент галактозо-1-фосфатуридилилтрансфераза, под действием которого обра-

    галактозо-1-фосфат УДФ-галактоза

    зуется нуклеотидное производное галактозы – уридиндифосфат-галактоза (УДФ-галактоза) и пирофосфат.

    В дальнейшем УДФ-галактоза изомеризуется в УДФ-глюкозу под действием специфической НАД-зависимой 4-эпимеразы:


    УДФ-галактоза УДФ-глюкоза
    После гидролитического расщепления УДФ-глюкоза распадается на два продукта – глюкозо-1-фосфат и уридинмонофосфат (УМФ):


    УДФ-глюкоза глюкозо-1-фосфат

    Глюкозо-1-фосфат может далее изомеризоваться в глюкозо-6-фосфат, а глюкозо-6-фосфат – во фруктозо-6-фосфат. Таким образом, посредством указанных реакций галактоза может превращаться во фруктозо-6-фосфат, который включается в реакции дыхания, или в глюкозо-6-фосфат, способный превращаться в продукты пентозофосфатного цикла.

    Возможен также синтез галактозо-1-фосфата из глюкозо-1-фосфата, так как в клетках организмов содержится фермент глюкозо-1-фосфатури-дилилтрансфераза, катализирующий образование УДФ-глюкозы из глюкозо-1-фосфата и УТФ:

    глюкозо-1-фосфат + УТФ ¾¾® УДФ-глюкоза + Н4Р2О7

    Затем УДФ-глюкоза под действием 4-эпимеразы изомеризуется в УДФ-галактозу, при гидролизе которой образуется галактозо-1-фосфат:

    УДФ-галактоза + Н2О ¾¾® галактозо-1-фосфат + УМФ

    Взаимопревращения гексоз и пентоз осуществляются в пентозофосфатном цикле и цикле Кальвина. Важное значение для этих реакций имеют ферменты транскетолаза и трансальдолаза, а в пентозо-фосфатном цикле – ещё и фермент фосфоглюконатдегидрогеназа, ката-лизирующий окислительное декарбоксилирование 6-фосфоглюконовой кислоты с образованием рибулозо-5-фосфата. Этот фермент фактически осуществляет превращение гексозы в пентозу. Во взаимных превращениях пентоз также участвуют ферменты рибулозо-фосфатэпимераза и рибозофосфатизомераза, поддерживающие динамическое равновесие между рибулозо-5-фосфатом, с одной стороны, и ксилулозо-5-фосфатом и рибозо-5-фосфатом, с другой стороны.

    Ксилоза и арабиноза синтезируются также из гексоз, но другим путём. При этом в качестве промежуточных продуктов образуются нуклеотидные производные глюкуроновой и галактуроновой кислот. На первом этапе осуществляется ситез УДФ-глюкозы из глюкозо-1-фосфата и

    УТФ, а затем под действием фермента УДФ-глюкозодегидрогеназы (1.1.1.22) УДФ-глюкоза окисляется в УДФ-глюкуроновую кислоту:

    У
    ДФ-глюкоза УДФ-глюкуроновая

    кислота

    З
    атем УДФ-глюкуроновая кислота подвергается декарбоксили-рованию и превращению в пиранозную форму УДФ-ксилозы:

    УДФ-глюкуроновая УДФ-ксилоза

    кислота

    Полученная таким путём УДФ-ксилоза используется в процессе синтеза ксиланов.

    П
    о аналогичному механизму осуществляется синтез УДФ-арабинозы из УДФ-галактозы, при этом в качестве промежуточного продукта образуется УДФ-галактуроновая кислота. УДФ-арабиноза так же, как и УДФ-ксилоза, не накапливается в растительных тканях, а используется для синтеза арабанов. Кроме того, возможны взаимные превращения УДФ-глюкуроновой и УДФ-галактуроновой кислот, а также пираназных форм УДФ-ксилозы и УДФ-арабинозы под действием соответствующих 4-эпимераз.

    УДФ-глюкуроновая кислота УДФ-галактуроновая кислота

    УДФ-галактуроновая кислота является основным источником галактуроновой кислоты для синтеза пектиновых веществ, а УДФ-глюкуроновая кислота участвует в синтезе ксиланов (в качестве ответвлений), полиуренидов, аскорбиновой кислоты.

    Превращение моносахаридов в спирты. У растений, грибов и водорослей важную роль в углеводном обмене играют спирты – сорбит, маннит, дульцит.

    Дульцита много содержится в листьях ряда растений, особенно в листьях бересклета. Сорбита много накапливается в плодах и ягодах. Очень много маннита в грибах и водорослях, а также в некоторых растительных продуктах. Синтез этих спиртов осуществляется в результате восстановления соответствующих моносахаридов. Наиболее хорошо изучена реакция образования маннита из фруктозы. Эту реакцию катализирует фермент маннитолдегидрогеназа (1.1.1.138):


    СН2ОН СН2ОН

    | |

    C=O НO–C–H

    | |

    НO–C–H + НАДФ×Н + Н+ ¾® НO–C–H + НАДФ+

    | |

    H–C–OH H–C–OH

    | |

    H–C–OH H–C–OH

    | |

    CH2OH CH2OH

    фруктоза маннит


    Спирты, синтезируемые в результате восстановления моносахаридов, выполняют функцию резервных углеводов. Они очень легко превращаются в соответствующие моносахариды.

    8.3. Синтез и распад олигосахаридов и полисахаридов.

    Наиболее распространенный олигосахарид растений – сахароза, который синтезируется только в клетках растений и выполняет в них роль транспортной формы, а также может накапливаться в качестве запасного вещества в корнеплодах сахарной свеклы, сахарном тростнике, овощах, плодах и ягодах. В листьях растений синтез сахарозы происходит в цитоплазме фотосинтезирующих клеток из УДФ-глюкозы и фруктозо-6-фосфата, образующегося в реакциях цикла Кальвина.

    Н
    а первом этапе синтеза сахарозы a-глюкоза подвергается активированию путём фосфорилирования от АТФ под действием фермента гексокиназы. В результате реакции образуется глюкозо-6-фосфат и АДФ:

    a-глюкоза глюкоза-6-фосфат

    З
    атем глюкозо-6-фосфат изомеризеутся в глюкозо-1-фосфат с участием фермента фосфоглюкомутазы:

    глюкозо-6-фосфат глюкозо-1-фосфат
    В следующей реакции глюкозо-1-фосфат взаимодействует с уридинтрифосфатом (УТФ), при этом образуются уридиндифосфатглюкоза (УДФ-глюкоза) и пирофосфорная кислота. Реакцию катализирует фермент глюкозо-1-фосфатуридилилтрансфераза (2.7.7.9):


    глюкозо-1-фосфат УДФ-глюкоза
    После этого из УДФ-глюкозы с участием фруктозо-6-фосфата осуществляется синтез сахарозофосфата под действием фермента сахарозофосфат-УДФ-глюкозилтрансферазы (2.4.1.14):

    УДФ-глюкоза фруктозо-6-фосфат сахарозофосфат
    С участием фермента сахарозофосфатазы сахарозофосфат гидролизуется с образованием сахарозы и фосфорной кислоты:

    сахарозофосфат + Н2О ¾® сахароза + Н3РО4

    Таким образом, для синтеза сахарозы затрачивается энергия макро-эргических связей АТФ и УТФ, необходимых для активирования a-глю-козы, а также энергия биоэнерггетических продуктов световой фазы фотосинтеза, которая потребляется в реакциях цикла Кальвина при образовании фруктозо-6-фосфата.

    В нефотосинтезирующих клетках растений (корнеплодов, клубней картофеля и земляной груши, зародышей пшеницы и кукурузы, семян гороха и др.) найден фермент сахарозо-УДФ-глюкозилтрансфераза (2.4.1.13), катализирующий синтез сахарозы из УДФ-глюкозы и фруктозы в соответсвии со следующей реакцией:

    УДФ-глюкоза + фруктоза D сахароза + УДФ

    Следует отметить, что при высокой концентрации УДФ данный фермент может катализировать и обратную реакцию образования УДФ-глюкозы и фруктозы из сахарозы. С помощью такой реакции, например, происходит включение транспортной формы углеводов–сахарозы в биохимические превращения, имеющие место в акцепторных клетках растений.

    Другой путь включения сахарозы в обмен веществ организма – её гидролиз под действием фермента b-фруктофуранозидазы, который даёт свободные формы моносахаридов глюкозы и фруктозы:

    сахароза + Н2О ¾® глюкоза + фруктоза

    Фермент b-фруктофуранозидаза (или инвертаза) содержится в клетках растений, животных, грибов. В клетках бактерий найден также фермент сахарозофосфорилаза, который способен превращать сахарозу во фруктозу и глюкозо-1-фосфат:

    сахароза + Н3РО4 ¾®глюкозо-1-фосфат + фруктоза

    Образующийся в этой реакции глюкозо-1-фосфат может затем непосредственно включиться в реакции анаэробного дыхания.

    Синтез полисахаридов катализируют ферменты гликозилтрансфе-разы, которые осуществляют перенос остатков соответствующих моносахаридов, связанных с нуклеозиддифосфатными группировками, на акцептор, представляющий собой олигосахарид, который включает 2-4 соединённых О-гликозидными связями моносахаридных остатка. При этом могут синтезироваться полимеры, имеющие линейную (цепочечную) структуру или разветвлённые молекулы, состоящие как из одинаковых, так и из разных моносахаридных остатков. Многие гликозилтрансферазы представлены белками, которые связаны в определённых участках с внутриклеточными мембранами.

    Синтез крахмала. Крахмал в растительных тканях представлен двумя полисахаридами амилозой и амилопектином. Синтез амилозы происходит в 3 этапа. Вначале осуществляется активирование a-глюкозы путём фосфорилирования и образования аденозиндифосфатглюкозы (АДФ-глюкозы) под действием фермента АДФГ-пирофосфорилазы:

    гексокиназа

    глюкоза + АТФ ¾¾¾® глюкозо-6-фосфат + АДФ
    фосфоглюко-

    глюкозо-6-фосфат ¾¾¾® глюкозо-1-фосфат

    мутаза
    АДФГ-пиро-

    глюкозо-1-фосфат + АТФ ¾¾¾® АДФ-глюкоза + Н4Р2О7

    фосфорилаза
    На следующем этапе с участием АДФ-глюкозы под действием фермента глюкозилтрансферазы синтезируется олигосахарид, состоящий из 2-4 остатков глюкозы, соединённых a(1®4)-связями. Фермент глюкозилтрансферазу очень часто называют D-ферментом. Образующийся под действием D-фермента олигосахарид далее служит акцептором для присоединения глюкозных остатков от АДФ-глюкозы при синтезе полимера.

    Образование цепочечных структур молекул амилозы катализирует фермент АДФГ-крахмалглюкозилтрансфераза (2.4.1.21). Реакция протека-ет по следующей схеме:

    (глюкоза)n + АДФ-глюкоза ¾® (глюкоза)n+1 + АДФ

    первичный акцептор промежуточный продукт

    полимеризации

    В этой реакции с помощью фермента остаток глюкозы от АДФ-глюкозы переносится на первичный акцептор, в результате чего его глюкозная цепь удлиняется на один остаток. Затем полученный продукт становится акцептором следующего остатка глюкозы и так продолжается присоединение глюкозных остатков от АДФ-глюкозы на соответствующий промежуточный акцептор, пока не закончится полный синтез молекулы амилозы.

    В ходе синтеза амилозы образуется длинная цепь до 300 глюкозных остатков, соединённых О-гликозидными a(1®4)-связями. При этом следует отметить, что остатки глюкозы в процессе синтеза крахмала всегда присоединяются к нередуцирующим концам полисахаридной цепи акцептора (т.е. со стороны НО-группы четвёртого углеродного атома глюкозы).

    Синтез a(1®6)-связяей в молекулах амилопектина, за счёт которых образуются разветвлённые молекулы, осуществляется с участием так называемого Q-фермента, который по современной номенклатуре ферментов получил название a-глюкантрансферазы (2.4.1.18). Q-фермент способен катализировать перенос определённого участка полиглюкозной цепи на НО-группу шестого углеродного атома одного из глюкозных остатков прилегающей и параллельно расположенной полисахаридной цепи. Расстояние между ответвлениями в цепи зависит от природы фермента.

    Донорорм глюкозных остатков для синтеза крахмала может также служить УДФ-глюкоза, но при этом скорость реакции очень сильно замедляется. Однако в клетках животных организмов основным источником глюкозных остатков для построения молекул гликогена (аналога крахмала) служит УДФ-глюкоза.

    Распад крахмала. Распад молекул крахмала может происходить путём гидролиза или фосфоролитических реакций. Гидролитическое расщепление a(1®4)-связей в молекулах крахмала катализируют амилазы: a-амилаза (3.2.1.1), b-амилаза (3.2.1.2), глюкоамилаза (3.2.1.3).

    a-Амилазы действуют на a(1®4)-связи между точками ветвления и способны расщеплять молекулы амилопектина на более мелкие фрагменты, представляющие собой низкомолекулярные полисахариды – декстрины. Для проявления каталитической активности a-амилаз необходимо присутствие в реакционной среде хлорид-ионов, которые служат активаторами фермента. Без участия a-амилаз невозможно полное гидролитическое расщепление молекул амилопектина.

    Под действием b-амилаз происходит гидролитическое расщепление a(1®4)-связей на концах полисахаридных цепей целых молекул или декстринов с образованием b-мальтозы. Действие этих ферментов прекращается при достижении точек ветвления молекул крахмала, в которых глюкозные остатки соединены a(1®6)-связями.

    Глюкоамилазы так же, как и b-амилазы, катализируют гидролиз a(1® 4)-связей на концах полисахаридных цепей, но в результате действия этих ферментов образуются молекулы глюкозы.

    Гидролитическое расщепление a(1®6)-связей в точках ветвления молекул амилопектина катализируют R-ферменты, которые называют амилопектин-1,6-глюкозидазами (3.2.1.9)

    Под действием всего набора амилолитических ферментов крахмал гидролизуется с образованием мальтозы и глюкозы. Однако на мальтозу также действуют ферменты, относящиеся к гидролазам, a-глюкозидазы (3.2.1.20), которые расщепляют молекулы мальтозы с образованием глюкозы. Схематически действие гидролитических ферментов на молекулу крахмала показано на рисунке 38.

    Препараты, содержащие амилолитические ферменты, используются в производстве хлеба, пива, пищевого спирта, а также в качестве кормовых добавок в животноводстве для улучшения переваривания крахмала, содержащегося в кормах.

    Фосфоролитическое расщепление молекул крахмала катализируют ферменты a-глюканфосфорилазы (2.4.1.1). Под действием этих ферментов осуществляется перенос глюкозных остатков от молекул крахмала на фосфорную кислоту, при этом в качестве основного продукта реакции образуется глюкозо-1-фосфат, который далее может быть использован для синтеза УДФ-глюкозы или включаться в анаэробную стадию дыхания. Реакции фосфоролиза крахмала проходят по следующей схеме:

    (глюкоза)n + Н3РО4 ¾® глюкозо-1-фосфат + (глюкоза)n-1

    крахмал
    Особенно высокая активность амилаз и a-глюканфосфорилаз наблюдается при прорастании семян, клубней и луковиц, когда в них происходит интенсивный распад полисахаридов крахмала и увеличивается концентрация декстринов, мальтозы и моносахаридов, используемых для формирования тканей проростков.
    В процессе распада крахмал не только может превращаться в мальтозу и глюкозу, но также и в сахарозу. Наиболее активно такие превращения происходят в листьях растений с фотосинтетическим крахмалом. На первом этапе указанных превращений под действием соответствующего трансгликозилирующего фермента остатки глюкозы от крахмала переносятся на УДФ, в результате образуется УДФ-глюкоза:

    (глюкоза)n + УДФ ¾® УДФ-глюкоза + (глюкоза)n-1

    крахмал декстрин
    1   ...   6   7   8   9   10   11   12   13   14


    написать администратору сайта