Главная страница
Навигация по странице:

  • Модульная единица 5. Витамины. Цели и задачи изучения модульной единицы.

  • 5.1. Строение, свойства и биологические функции витаминов.

  • Лекции биохимия 2. Резюме по модульной единице 4


    Скачать 2.84 Mb.
    НазваниеРезюме по модульной единице 4
    АнкорЛекции биохимия 2.doc
    Дата05.03.2018
    Размер2.84 Mb.
    Формат файлаdoc
    Имя файлаЛекции биохимия 2.doc
    ТипДокументы
    #16270
    страница1 из 14
      1   2   3   4   5   6   7   8   9   ...   14

    Резюме по модульной единице 4.

    Аминокислоты – азотсодержащие органические вещества, имеющие аминные и карбоксильные группы, соединённые с алифатическим, ароматическим или гетероциклическим радикалом. В организмах синтезируются и превращаются ферментами L-формы аминокислот. В состав белков входят протеиногенные аминокислоты. Протеиногенные аминокислоты, которые не синтезируются в организмах человека и животных, называют незаменимыми. Аминокислоты в физиологической среде образуют биполярные ионы, которые способны взаимодействовать как с кислотами, так и основаниями. В растениях аминокислоты преставляют собой первичные азотистые вещества, участвующие в синтезе других азотистых соединений.

    В составе молекул нуклеотидов содержатся остатки азотистых оснований, рибозы или дезоксирибозы, а также ортофосфорной кислоты. В результате присоединения к нуклеотидам дополнительных остатков ортофосфорной кислоты образуются дифосфат- и трифосфатпроизводные нуклеотидов (АТФ, АДФ, ГТФ,ГДФ, УТФ, УДФ, ЦТФ, ЦДФ и др.). Нуклеотиды обладают кислотными свойствами. Из рибонуклеотидов синтезируются рибонуклеиновые кислоты (РНК), макроэргические нуклеозидполифосфаты, коферментные группировки. Из дезоксирибонуклеотидов образуются молекулы дезоксирибонуклеиновой кислоты (ДНК).

    Белковые молекулы состоят из белковых полипептидов, которые включают остатки протеиногенных аминокислот, соединённых пептидными связями. Пептидные связи образуются в результате взаимодействия карбоксильных и аминных групп, соединённых с -углеродными атомами. Последовательность соединения аминокислотных остатков в белковых полипептидах называют первичной структурой белков. Она определяется последовательностью кодонов в генах, кодирующих структуру соответствующих белков. В составе белковых молекул чаще всего содержится 100-400 аминокислотных остатков. К белкам относят полипептиды, имеющие в своём составе более 50 аминокислотных остатков.

    Вторичная структура белков возникает в результате образования водородных связей между группировками атомов, образующих пептидные связи. Различают три разновидности вторичной структуры белков: -спираль, -структуры и нерегулярные структуры. Большинство белков образуют смешанную вторичную структуру. В формировании третичной структуры белков важную роль играют водородные связи, электростатические и гидрофобные взаимодействия, которые возникают при взаимодействии радикалов аминокислот. У многих белков образуются также дисульфидные связи, которые участвуют в формировании третичной структуры. Олигомерные белки образуют четвертичную структуру.

    Пространственную структуру белковой молекулы, которая формируется в физиологической среде и обеспечивает выполнение белком его биологической функции называют нативной конформацией белковой молекулы. Необратимое изменение пространственной структуры белковых молекул, которое сопровождается потерей их нативных свойств, называют денатурацией белков. Денатурация белков происходит под воздействием высокой температуры, сильно кислой или сильно щелочной среды, катионов тяжёлых металлов, органических растворителей и детергентов.

    Белки разделяют на две большие группы – протеины и протеиды. Молекулы протеинов построены только из аминокислотных остатков, а в состав протеидов, кроме аминокислотных остатков, входят группировки неаминокислотной природы (моносахариды, липиды, нуклеотиды, витамины и др.), атомы металлов, остатки фосфорной кислоты. Белки с оптимальным содержанием незаменимых аминокислот называют полноценными, а белки с пониженным содержанием незаменимых аминокислот – неполноценными. Для характеристики полноценности белков используется показатель – биологическая ценность белков. Генетиками и селекционерами совместно с биохимиками проводится научно-исследовательская работа по созданию генотипов растений с улучшенным аминокислотным составом белков.
    Модульная единица 5. Витамины.
    Цели и задачи изучения модульной единицы. Изучить строение, свойства и биологические функции витаминов. Научить студентов испльзовать сведения о витаминах при оценке качества растительной продукции.
    5.1. Строение, свойства и биологические функции витаминов.

    По современным представлениям к витаминам относятся низкомолекулярные органические вещества довольно разнообразного химического строения, которые строго необходимы для жизнедеятельности организмов в сравнительно малых количествах. Биологическая роль многих витаминов заключается в том, что они в качестве структурных группировок (коферментов) входят в состав активных центров многих ферментов и без них невозможно нормальное осуществление биохимических процессов (см. гл. “Ферменты”). При полном исключении из питания витаминов соответствующие ферменты становятся не способными катализировать биохимические превращения, вследствие чего происходят нарушения обмена веществ, приводящие к серьезным заболеваниям - авитаминозам. При частичном недостатке витаминов понижается активность тех или иных ферментов, в результате снижается скорость определенных биохимических реакций, катализируемых данными ферментами, и тогда наблюдаются нарушения обмена веществ, называемые гиповитаминозами.

    Растения и природные формы микроорганизмов (за некоторыми исключениями) при нормальных условиях развития способны сами синтезировать необходимые для их жизнедеятельности витамины, тогда как организмы человека и животных такой способностью не обладают и должны постоянно получать с пищей или непосредственно витамины, или их ближайшие биохимические предшественники – провитамины, которые в человеческом и животном организмах легко превращаются в витамины.

    Однако жвачные животные, имеющие в преджелудках (рубце) обильную микрофлору, в значительной степени удовлетворяют свою потребность в витаминах за счет переваривания клеток отмерших микроорганизмов, содержащих многие витамины. Способность микроорганизмов (бактерий, актиномицетов, дрожжевых клеток) синтезировать большое количество витаминов используется для промышленного получения кормовых и медицинских препаратов, обладающих витаминной активностью. В качестве промышленных продуцентов витаминов обычно применяют специальные отселектированные штаммы микроорганизмов, способные к сверхсинтезу тех или иных витаминов.

    Изолированные от растений отдельные клетки, ткани и органы также не могут синтезировать многие витамины и при их выращивании в культуре in vitro ( на искусственной питательной среде) необходимо добавление в питательную среду соответствующего комплекса витаминов.

    Витаминной активностью обладают несколько десятков химических соединений, которые образуют родственные группы, сходные по строению молекул и своему биологическому действию. По мере открытия витаминов их обозначали буквами латинского алфавита. Например, витамин, предохраняющий от заболевания полиневритом, назвали В1, излечива-ющий цингу - С, антирахитический витамин - Д, предохраняющий от заболевания ксерофтальмией - А и.т.д. В соответствии с требованиями современной номенклатуры витамины называют в зависимости от их химического строения. По способности к растворению в жирах или воде все витамины подразделяют на две большие группы - жирорастворимые и водорастворимые. Потребность в витаминах обычно выражают в мг или мкг за 1 сутки, а также в расчете на 1 МДж потребляемой энергии, содержание витаминов - в тех же единицах, но в расчете на 100 г продукта (мг % или мкг %).
      1   2   3   4   5   6   7   8   9   ...   14


    написать администратору сайта