Главная страница
Навигация по странице:

  • Резюме по модульной единице 5.

  • Тестовые задания к лекции 2. Тесты № 29-66. Лекция 3. Основы биохимической энергетики.

  • Рассматриваемые вопросы.

  • Модульная единица 6. Биохимическая энергетика. Цели и задачи изучения модульной единицы.

  • 6.1. Принципы функционирования биоэнергетических систем.

  • Лекции биохимия 2. Резюме по модульной единице 4


    Скачать 2.84 Mb.
    НазваниеРезюме по модульной единице 4
    АнкорЛекции биохимия 2.doc
    Дата05.03.2018
    Размер2.84 Mb.
    Формат файлаdoc
    Имя файлаЛекции биохимия 2.doc
    ТипДокументы
    #16270
    страница5 из 14
    1   2   3   4   5   6   7   8   9   ...   14

    S-МЕТИЛМЕТИОНИН (витамин U). По химическому строению пред-ставляет собой метилсульфоновое производное аминокислоты метионина:




    Чистые препараты витамина U получают в виде солянокислой соли S-метилметионинсульфонилхлорида. S-Метилметионин играет важную роль в активизации биохимических процессов в слизистой оболочке желудка и кишечника организма человека и оказывает положительное действие при лечении язвенных болезней желудка и двенадцатиперстной кишки. В биохимических процессах этот витамин может участвовать как активный донор метильных групп. При лечении язвенных заболеваний суточная доза витамина составляет не менее 250 мг.

    Витамин U синтезируется в растениях, особенно много его содержится в овощах, мг% в расчете на сухую массу:

    Томаты 20-45 Спаржа 100-150

    Капуста белокочанная до 85 Сельдерей 15-25

    АНТИВИТАМИНЫ


    В ходе изучения строения, свойств и биологической функции витаминов были найдены вещества, присутствие которых в организме вызывает авитаминоз по определенным витаминам, хотя данные витамины поступают в организм. Такие вещества были названы антивитаминами.

    Впервые механизм действия антивитаминов был выяснен в 1940 г. Д. Вудсом, который показал, что сульфаниламид (стрептоцид) является метаболическим конкурентом витамина парааминобензойной кислоты, участвующей в синтезе дигидроптероевой кислоты - предшественника другого витамина - фолиевой кислоты. По химическому строению сульфаниламид и парааминобензойная кислота представляют собой структурные аналоги:



    Сульфаниламид способен вместо п-аминобензойной кислоты вступать во взаимодействие с ферментом, катализирующим образование дигидроптероевой кислоты, при этом фермент становится неактивным, вследствие чего прекращается синтез дигидроптероевой кислоты и, как следствие, ингибируется также синтез фолиевой кислоты, что и может быть причиной авитаминоза. Однако, если в клетках организма повысить концентрацию п-аминобензойной кислоты, то действие сульфаниламида ослабляется. На основе сульфаниламида и его структурных аналогов были разработаны медицинские препараты, подавляющие рост микроорганизмов путем создания у них авитаминоза по фолиевой кислоте.

    В дальнейшем были изучены структурные аналоги других витаминов, обладающие антивитаминной активностью. Все они способны замещать в активном центре фермента биологически активную витаминную группировку на химически изменённую группировку структурного аналога, переводя фермент в неактивное состояние. Однако действие антивитаминов, представляющих структурные аналоги витаминов, является обратимым и они могут вытесняться из активного центра фермента повышенной концентрацией соответствующих витаминов.

    Довольно хорошо изучено биологическое действие химических аналогов тиамина. Замещение в пиримидиновом кольце тиамина метильной группы на этильную, пропильную и изопропильную приводит к существенному снижению витаминной активности структурных аналогов тиамина, а при введении в пиримидиновое кольцо бутилового радикала образуется соединение, обладающее антивитаминной активностью. В результате замещения в пиримидиновом кольце аминогруппы на гидроксильную группу образуется окситиамин, обладающий очень сильным антивитаминным действием. При модификации тиазолового кольца в молекуле тиамина также образуется конкурентный аналог этого витамина - пиритиамин, обладающий сильным токсическим действием.



    Известны также синтетические производные пиридоксина, которые ингибируют ферментные системы, имеющие в активном центре кофер-ментные формы этого витамина. Особенно сильным антивитаминным дей-ствием обладает 4-дезоксипиридоксин и токсопиримидин, представля-ющий собой оксипроизводное пиримидиновой группировки молекулы тиамина. В процессе изучения структурных аналогов выявлены антивита-минные формы для многих других витаминов: пантотеновой кислоты, никотиновой кислоты, рибофлавина, биотина, фолиевой кислоты, филло-хинона, токоферола, аскорбиновой кислоты.

    Как установлено в результате исследований, к антивитаминам отно-сятся химические вещества, способные образовывать с витаминами неак-тивные соединения, а также белковые молекулы, специфически связыва-ющие витамины. Так, например, изоникотилгидразид является антивита-мином пиридоксина, так как образует с пиридоксалем неактивное соеди-нение (по-видимому гидразон), которое не может превращаться в пири-доксальфосфат, вследствие чего в присутствии изоникотинилгидразида наблюдаются симптомы недостаточности витамина В6.

    В сыром яичном белке содержится антивитамин биотина – авидин, представляющий собой гликопротеид с молекулярной массой около 68000. Молекула авидина включает четыре полипептидные субъединицы, в каждой из которых имеется биотинсвязывающий участок, имеющий сильное химическое сродство к биотину. При скармливании опытным животным сырого яичного белка довольно быстро наблюдается сильно выраженный авитаминоз по биотину. Антивитаминное действие авидина очень часто используется исследователями в качестве теста для обнару-жения и изучения биотинсодержащих ферментов.



    Вещества, обладающие антивитаминным действием, в значительных количествах содержатся в растительных продуктах. В проросших семенах гороха найдены антивитамины биотина и пантотеновой кислоты, в зерне кукурузы - антагонист никотиновой кислоты, в семенах льна – антивита-мин пиридоксина, в испорченном сладком клевере - антагонисты витамина К. Некоторые растительные белки подобно авидину способны специфи-чески связывать определенные витамины и таким образом действовать как антивитамины, в связи с чем не все растительные продукты могут упо-требляться в пищу в сыром виде. После проваривания растительной пищи белки, обладающие антивитаминным действием, теряют способность к связыванию витаминов, так как в процессе варки пищи они подвергаются тепловой денатурации.

    Вопросы для повторения.

    1. Какие вещества относят к витаминам и как они влияют на жизнедеятельность организмов? 2. Какие имеются сведения о классификации витаминов и потребности в витаминах разных организмов? 3. В чём состоят химические и биологические особен-ности важнейших витаминов (ретинола, кальциферола, токоферола, филлохинона, тиа-мина, рибофлавина, пиридоксина, пантотеновой, никотиновой, аскорбиновой и фоли-евой кислот, кобаламина, биотина, цитрина, миоинозита, S-метилметионина)? 4. Како-во содержание важнейших витаминов в зерне и бобовых культур, семенах масличных растений, клубнях картофеля, корнеплодах, кормовых травах, овощах, плодах и ягодах? 5. Как изменяется содержание витаминов в процессе роста и развития растений и при формировании их продуктивных органов? 6. Как влияют на накопление витаминов природно-климатические факторы, погодные условия и уровень обеспеченности растений элементами питания? 7. Какие возможны потери витаминов при нарушении технологических режимов сушки, хранения и переработки растительных продуктов? 8. В чём состоят особенности действия антивитаминов? 9. Какие имеются сведения о наличии антивитаминов в растительных продуктах?

    Резюме по модульной единице 5.

    К витаминам относятся вещества разного химического строения, которые строго необходимы для жизнедеятельности организмов в небольших количествах. Биологическая активность витаминов определяется тем, что они в качестве активных группировок входят в состав ферментов и предопределяют их каталитические свойства. При недостатке витаминов понижается активность соответствующих ферментов, вследствие чего замедляются или прекращаются биохимические реакции, катализируемые данными ферментами, и возникают заболевания, называемые авитаминозами. Растения и природные формы микроорганизмов синтезируют необходимые для их развития витамины. Однако человек и животные не способны к синтезу витаминов, поэтому должны получать их с пищей. Источниками многих витаминов для жвачных животных служат микроорганизмы их пищеварительной системы. Для человека основными источниками витаминов являются пищевые продукты растительного и животного происхождения, для сельскохозяйственных животных – растительные корма.

    Некоторые витамины содержатся в растительных и микробных продуктах в виде биохимических прешественников, называемых провитаминами (каротин – провитамин А, эргостерол – провитамин D). Витамины в качестве коферментов или непосредственно субстратов участвуют в окислительно-восстановительных процессах (токоферол, филлохинон, рибофлавин, никотиновая кислота, аскорбиновая кислота, цитрин), реакциях обмена азотистых веществ (пиридоксин, фолиевая кислота, кобаламин), липидов (биотин, пантотеновая кислота, миоинозит), процессах карбоксилирования (биотин) и декарбоксилирования (тиамин), обменных реакциях слизистых оболочек пищеварительной системы человека и животных (ретиналь, кальциферол, S-метилметионин). Некоторые химические вещества способны понижать биологическую активность витаминов, их называют антивитаминами. Известны антивитамины, являющиеся структурными аналогами витаминов, которые способны связываться с ферментами и переводить их в неактивное состояние. Другие антивитамины образуют с витаминами неактивные соединения. Известны также белковые антивитамины, которые представляют собой белки, образующие прочные комплексы с витаминами.
    Тестовые задания к лекции 2. Тесты № 29-66.
    Лекция 3. Основы биохимической энергетики.
    Аннотация. Излагаются закономерности биоэнергетических превращений в живых организмах. Рассматриваются возможности использования термодинамических функций (внутренняя энергия системы, энтальпия, энтропия, свободная энергия Гиббса) для характеристики энергетических превращений в ходе биохимических реакций. Изучаются термодинамические условия для осуществления сопряжённого синтеза веществ в живых организмах. Указывается роль макроэргических соединений в сопряжённом синтезе веществ и осуществлении связи между катаболическими и анаболическими реакциями. Рассматриваются основные группы макроэргических соединений и пути образования АТФ в организмах.
    Ключевые слова: биохимическая энергетика, биохимическая система, энтропия, энтальпия, теплота сгорания веществ, экзотермические и эндотермические реакции, самопроизвольные реакции, свободная энергия, экзергонические и эндергонические реакции, сопряжённые реакции синтеза веществ, макроэргические соединения, фототрофные и хемотрофные организмы, катаболические и анаболические реакции.


    Рассматриваемые вопросы.

    1. Принципы функционирования биоэнергетических систем.

    2. Тепловые эффекты биохимических реакций.

    3. Термодинамические критерии направленности биохимических превращений.

    4. Сопряжённый синтез веществ.

    5. Общие закономерности осуществления биоэнергетических процессов в организмах.


    Модульная единица 6. Биохимическая энергетика.
    Цели и задачи изучения модульной единицы. Изучить закономерности биоэнергетических превращений в организмах. Научить студентов использовать сведения по биохимической энергетике для прогнозирования интенсивности и направленности биохимических процессов в растительных организмах и обоснования изменений химического состава растительной продукции.
    6.1. Принципы функционирования биоэнергетических систем.

    В клетках живого организма одновременно происходят многие тысячи биохимических реакций, которые сопровождаются выделением или поглощением энергии, а также превращением одних форм энергии в другие. Так, например, в листьях растений в ходе фотосинтеза осуществляется поглощение электромагнитной энергии солнечного света и превращения её в электрическую энергию заряженных частиц, которая затем в хлоропластах трансформируется в энергию трансмембранного электрохимического потенциала, инициирующего синтез молекул АТФ. А с участием АТФ проходит синтез жизненно важных органических веществ. И таким образом энергия солнечного света переходит в энергию химических связей органических веществ, синтезируемых в растительном организме. Как узнаем далее, часть поглощённой листьями световой энергии превращается в тепло и энергию излучения в виде флуоресценции и фосфоресценции.

    У всех живых организмов в процессе биохимических реакций дыхания происходит превращение химической энергии углеводов, жиров, азотистых веществ в тепловую энергию, а также энергию мембранных потенциалов внутриклеточных структур и химическую энергию АТФ, восстановленных динуклеотидов, которые затем становятся источниками энергии для синтеза новых органических веществ, необходимых для поддержания жизненных функций организма. Совокупность всех биоэнергетических превращений в организме, обеспечивающих его нормальную жизнедеятельность в изменяющихся условиях окружающей среды, изучает раздел биохимии, называемый биохимической энергетикой.

    В связи с тем, что основу жизненных явлений, происходящих в организме, составляют химические и физические процессы, для изучения биоэнергетических превращений применяются законы химической термодинамики. И поэтому для оценки энергетических параметров биохимических реакций используются термодинамические функции – внутренняя энергия системы (U), энтальпия (Н), энтропия (S), свободная энергия Гиббса (G) и др. При этом в ходе биохимических превращений определяются не абсолютные их значения, а изменения термодинамических функций - DU, DH, DS, DG. Очень часто такие изменения термодинамических функций оценивают при стандартных условиях и тогда их обозначают специальным символом - DU˚, DH˚, DS˚, DG˚.

    За стандартные условия в биохимической энергетике принимаются: давление 101,3 кПа, температура 25˚С (298,16 К), концентрация веществ 1 моль/л, рН физиологической среды 7,0. Кроме того, следует учитывать, что биохимические реакции, катализируемые ферментами, протекают очень быстро и они осуществляются при атмосферном давлении и температуре, которые изменяются очень медленно. Поэтому можно считать, что биоэнергетические превращения в ходе биохимических реакций происходят при постоянной температуре и постоянном давлении.

    В результате определения изменений термодинамических функций можно выяснить, происходит ли в ходе биохимического процесса выделение или поглощение энергии, установить возможность трансформации различных видов энергии и решить вопрос о количестве выделяемой или поглощаемой энергии. На основе полученных таким образом данных можно оценить вероятность самопроизвольного осуществления биохимических реакций, а также выявить возможные источники энергии для осуществления биосинтетических процессов.

    Живые организмы, их клетки и многие компоненты внутриклеточных структур представляют собой открытые термодинамические системы, которые обмениваются и веществом, и энергией с окружающей средой. При этом такой обмен является необходимым условием поддержания их жизнедеятельности. Если обмен организма веществом и энергией с окружающей средой прекращается, то организм погибает. Так, например, растения не могут произрастать без света, кислорода, углекислого газа, поступления воды и питательных веществ. Человек и животные не могут жить без пищи, воды и кислорода.

    Простейшая биохимическая система включает реагирующие вещества, продукты реакции, а также фермент, катализирующий данную биохимическую реакцию. Реагирующие вещества поступают в биохимическую систему из окружающей физиологической среды, а продукты реакции выходят из системы в окружающую среду. В зависимости от характера биохимического превращения в ходе реакции может происходить выделение в том или ином виде энергии в окружающую среду или, наоборот, поглощение энергии из окружающей среды, в результате чего будет происходить изменение внутренней энергии биохимической системы. В том случае, когда система выделяет определённое количество энергии в окружающую среду, общий запас её внутренней энергии уменьшается, а при поглощении энергии из окружающей среды – увеличивается.

    Изменение внутренней энергии системы происходит в соответствии с первым законом термодинамики – законом сохранения энергии, который для открытых систем имеет следующую формулировку: при любом процессе сумма внутренней энергии системы и энергии окружающей среды остаётся величиной постоянной. Исходя из этого, изменение внутренней энергии системы равно алгебраической сумме всех энергий, уходящих из системы в окружающую среду и входящих в неё из окружающей среды.

    Общий запас внутренней энергии биохимической системы зависит от её состава, массы, потенциальной и кинетической энергии молекул, атомов и частиц, входящих в состав системы, внутримолекулярной, внутриядерной и гравитационной энергии, термодинамических параметров (температуры, давления, объёма), а также обмена веществами и энергией с окружающей средой. Вместе с тем внутренняя энергия системы является функцией её состояния. В процессе биохимических превращений система переходит из одного термодинамического состояния в другое, при этом изменение внутренней энергии системы не зависит от пути перехода, а определяется разностью между конечным (U2) и начальным состоянием (U1) и поэтому можно записать DU = U2 – U1. И каким бы путём не осуществлялся переход системы от состояния U1 к состоянию U2, через ряд промежуточных стадий или в результате прямого превращения, согласно первому закону термодинамики величина DU не изменяется.

    Это важное положение используется в биохимической энергетике для оценки энергетических изменений в ходе биологического окисления веществ, которое осуществляется в клетках организмов постепенно, проходя множество промежуточных стадий. Однако суммарный энергетический эффект окисления в этих процессах равен количеству энергии, которое выделяется при сгорании органических веществ. Поэтому, сопоставляя теплоту сгорания исходных веществ и образующихся при биологическом окислении кислородом продуктов, можно с достаточно высокой точностью определять энергетические изменения в ходе указанных биохимических реакций.


    6. Теплота сгорания некоторых биохимических

    продуктов (кДж×моль-1)

    Биохимические

    Продукты

    Теплота

    сгорания

    Биохимические

    Продукты

    Теплота

    сгорания

    щавелевая кислота

    молочная кислота

    глюкоза

    фруктоза

    сахароза

    мальтоза

    глицерин

    этанол

    уксусная кислота

    пировиноградная

    кислота

    252

    1364

    2816

    2827

    5661

    5649

    1663

    1371

    876
    1144


    глутаровая кислота

    янтарная кислота

    пальмитиновая кислота

    олеиновая кислота

    стеариновая кислота

    индол

    салициловая кислота

    аланин

    глицин

    валериановая кислота

    ванилин

    2154

    1492

    10038

    11117

    11346

    4277

    3025

    1634

    979

    2852

    3825


    С помощью термодинамических расчётов и в специальных экспериментах доказано, если в процессе горения вещества система не совершает никакой работы, то по количеству выделившегося тепла можно судить об изменении внутренней энергии системы, так как в таком процессе DU = Q. В связи с этим для многих органических соединений, являющихся продуктами биохимических реакций, определена теплота сгорания ( табл. 6), которая представляет собой термохимический показатель, выражающий, количество тепла при полном сгорании 1 моля вещества с образованием высших оксидов.

    1   2   3   4   5   6   7   8   9   ...   14


    написать администратору сайта