Главная страница

химия. Российская академия образования институт содержания и методов обучения


Скачать 0.77 Mb.
НазваниеРоссийская академия образования институт содержания и методов обучения
Анкорхимия
Дата08.10.2022
Размер0.77 Mb.
Формат файлаdoc
Имя файлаdis1_chi.doc
ТипДиссертация
#722092
страница7 из 11
1   2   3   4   5   6   7   8   9   10   11


Использование кольцегранных моделей необходимо в VIII - XI классах при изучении тем: "Периодический закон и Периодическая система химических элементов Д.И.Менделеева. Строение атома. Химическая связь. Строение веществ".

Для изготовления и использования новых моделей электронов, атомов и молекул может служить набор “Магеом”, «Кольцегранник» или разработанный демонстрационный “Набор для сборки кольцегранных моделей атомов и молекул". Благодаря размерам собираемых моделей (масштаб увеличения 1 млрд.) набор «Магеом» более подходит для его использования в качестве демонстрационного. Однако, как отмечают педагоги [104], требуются также и раздаточные материалы, применение которых повышает эффективность обучения, облегчает осмысление изучаемого материала. В современных условиях для увеличения доли самостоятельных работ учащихся необходимо создание специализированного набора для изготовления объемных моделей атомов и молекул. Подобный набор разработан в виде раздаточного варианта “Набора для сборки кольцегранных моделей атомов и молекул". Он является расширенным аналогом набора «Кольцегранник». Для удобства использования его в качестве раздаточного размер моделей уменьшен в два раза, благодаря повышению пластичности трубочек.

Наборы для изготовления кольцегранных моделей универсальны (они позволяют проводить сборку необходимых моделей) и в одностороннем порядке технологически совместимы: раздаточный набор «Кольцегранник» и “Набор для сборки кольцегранных моделей атомов и молекул" для самостоятельной работы учащихся при изучении базового курса химии в общеобразовательной школе совместимы с демонстрационным набором «Магеом».

Преимуществом набора для изготовления кольцегранных моделей являются его широкие возможности, позволяющие моделировать электронные поверхности молекул. Набор также может использоваться для специализированного практикума при углубленном изучении химии.

Набор обеспечивает быструю и наглядную демонстрацию строения атомов и молекул на уроках и возможность самостоятельного моделирования учащимися на уроке и во внеурочное время при изучении следующих тем:

  • изучение элементов 4, 5, 6, 7 групп главной подгруппы периодической системы;

  • основные классы неорганических соединений: оксиды, кислоты, основания, соли;

  • органические вещества: предельные и непредельные углеводороды, спирты, амины, оксиды.

Набор включает различные детали, позволяющие моделировать электронные оболочки различных атомов и молекул. Деталями набора являются трубочки разных цветов одного диаметра и различной длины, а также соединительные элементы в количестве, необходимом для сборки.

Набор “Магеом” состоит из пластмассовых трубочек четырех цветов трех длин и четырех комплектов соединительных элементов разных видов (см. вкладыш в наборе): главные элементы (для создания кольцегранных фигур), вершины (для сборки вогнутых фигур), вспомогательные элементы и элементы в виде сложных крестов (для сборки совмещенных и взаимопересекающихся фигур). Набор прост в обращении, для работы с ним требуются линейка и ножницы.

Набор «Кольцегранник» состоит из фрагментов трубочек (длина 20 см, диаметр 4 мм) и соединительных деталей, укомплектованных в количестве, необходимом для сборки двух, трёх электронных оболочек атомов, или одной, двух моделей молекул. Также как и в набор «Магеом» в набор «Кольцегранник» не входят детали, специально предназначенные для изображения ядер атомов, образующих молекулы.

Спроектирован “Набор для сборки кольцегранных моделей атомов и молекул". Этот специализированный набор состоит из трубчатых и соединительных элементов, укомплектованных в количестве, необходимом для проведения любой из необходимых самостоятельных лабораторных и практических работ. Описание работ, проводимых с использованием кольцегранных моделей, сведено в таблицу и находится в приложениях 1 и 2.

Данные об элементах, используемых в специализированном наборе, сведены в таблицу 2.2.

Таблица 2.2

Набор деталей для сборки кольцегранных моделей атомов и молекул


N

ЦВЕТ

ДЛИНА элемента

КОЛ-ВО

ДЛИНА общая

ДЕТАЛИ







см

шт

м

Соединительные

Вспомогатель-ные

Кольцо

Ядра

i

Y

X

1

чёрный

20 (18)

12

2.40

12

24

3




6

2

2

белый

13

14

1.82

14







6







3

красный

15

12

1.80

12

24

2

4




2

4

синий

16.5

5

0.85

5

12

(3)










5

зелёный

22

7

1.54

7

12

1










6

жёлтый

24

6

1.44

6

12

2

2







7

прозрачный







1.87



















8

серый

14

10

1.40

8

12













Всего:

13 м

64

96

8(11)

12

6

4


Материалом для изготовления деталей набора является пластмасса (поливинилхлорид, полипропилен, др.).

Конструкция комплектующих деталей набора обеспечивает быструю, удобную сборку необходимых моделей. Все комплектующие детали могут быть размещены в одной укладке в соответствующих ложементах.

Гарантийный срок службы набора - не менее 2-х лет. Средний срок службы - не менее 10-ти лет.

Набор снабжен методическими рекомендациями по сборке и использованию моделей молекул.

Хранить наборы можно в лаборантском помещении. При необходимости некоторые сложные в сборке модели хранятся в собранном виде рядом с шаро-стержневыми или вывешиваются в кабинете в качестве наглядных пособий.
Выводы к главе 2.

1. В соответствии с принципом научности и адаптации научных данных для обучения необходимо ввести в процесс обучения новые модели атомов и молекул, полученные на основе модели электрона в виде гибкого тора (или кольца), имеющего или обозначающего цветом наличие магнитных свойств.

2. Сформулированные педагогико-эргономические требования к моделям, как общие, так и специфические, позволили установить, что предложенная модель электрона в виде тонкого тора, или кольца и обладает новыми дидактическими возможностями, как и получаемые с её помощью кольцегранные модели атомов и молекул. Новые модели отличаются рядом преимуществ: отсутствие внутренних противоречий, удобство использования, совместимость с другими моделями, высокая наглядность, повышенная информативность.

3. Использование модели электрона в виде кольца или тора представляет нам новые дидактические возможности. Сразу несколько моделируемых сторон объекта можно отобразить с помощью этой перспективной модели:

3.1. Изображая элементарную частицу кольцом, мы имеем возможность демонстрации корпускулярно-волнового дуализма. Кольцо, символизирующее волновой процесс циркуляции распределенного заряда по замкнутому контуру, демонстрирует волновую природу частиц, а корпускулярные свойства частиц объясняются ограниченностью этого процесса в пространстве.

3.2. Благодаря наглядности модели, свойства, проявляемые электроном в атоме и описываемые ранее как постулаты Бора и Принцип Паули, становятся настолько очевидными, что не требуют постулирования - достаточно описания и демонстрации. В стационарном состоянии частицы представляются волновыми процессами, ограниченными эквипотенциальной поверхностью, внутри которой движение заряда не приводит к излучению. Излучение происходит только при переходе из одного стационарного состояния в другое, отличающееся другим энергетическим уровнем.

3.3. Модель электрона в виде закольцованной стоячей волны отражает состояние электрона, характеризующееся главным квантовым числом.

3.4. Модель электрона в виде кольца с обвивающей его спиралью, демонстрирует магнитные взаимодействия электронов в атомных оболочках и позволяет обозначить отличие частицы от античастицы.

4. Благодаря широким дидактическим возможностям (простота, наглядность, широкий диапазон применимости, совместимость с общепринятыми понятиями о формах и видах связей) кольцегранные модели можно вводить в процесс обучения в качестве необходимых моделей, дополняющих традиционные. При этом материал, предназначенный для обучения в классах с углубленным изучением химии, может быть рассмотрен и в базовом курсе, или материал, изучаемый в 10-х и 11-х классах, может быть рассмотрен ранее.

5. Определён и дополнен компонентный состав моделей по химии. Предложен специализированный набор для сборки кольцегранных моделей атомов и молекул. Дана характеристика комплекта моделей для изучения строения веществ, отражающая необходимость внедрения системного подхода использования моделей в процессе обучения.
Глава 3. Организация использования комплекса моделей при изучении строения вещества в курсе химии средней школы.


    1. Методические возможности использования комплекса с включением кольцегранных моделей при изучении строения веществ

в курсе химии средней школы.
Важным приёмом обучения является максимальное использование возможностей демонстрации. Не рассказы об устройстве атома, а модельная демонстрация создают эффект реальности объекта изучения - атомов и молекул. Большое значение модельным объяснениям приписывал Штофф В. А. [137, с. 257]: «Модельные объяснения с методологической точки зрения могут рассматриваться как вехи или этапы на пути к достоверному, истинному и теоретически более адекватному объяснению». Как отметил Пидкасистый П. И. [85, с. 85]: «Одно дело описывать что-то, а другое – объяснять… Для описания используются одни способы, а для объяснения другие». Для объяснения необходимы простые и быстро сменяющие друг друга образы изучаемого объекта. Образы, создаваемые материальными моделями и мысленные образы-модели используются совместно, преследуя цель создания единого дидактического образа изучаемого объекта. В качестве материальных могут использоваться различные модели как традиционные (шаростержневые, Стюарта, масштабные), так и новые, кольцегранные.

Анализ, проведенный в главе 1, показал, что для полноценного усвоения учащимися разнообразной информации, связанной со строением атома, недостаточно использования традиционных моделей. При использовании в процессе обучения различных по сложности моделей (таблица 1.2) у учащихся общеобразовательных заведений образуется брешь в знании о строении атома, связанная с дистанцией между малой информационной ёмкостью в области электронного строения традиционно используемых моделей (скелетные, шаро-стержневые, масштабные) и резко возрастающей сложностью использования орбитальных моделей. Образуется разрыв между принятым базовым уровнем обучения классов общеобразовательной школы и существующей необходимостью изучения физики и химии в свете современных научных представлений о строении атома. Таким образом, идейная несовместимость моделей молекулярных орбиталей с более простыми традиционными моделями приводит к необходимости углублённого изучения, что не предусмотрено в некоторых курсах, например, в классах гуманитарного профиля.

Встает проблема приведения содержания в соответствие с принципами не только историчности, но и научности, фундаментальности, адаптивности и технологичности.

С другой стороны, сложность и разрозненность знания, а местами и его противоречивость в части, посвященной устройству атома, является отражением исторического пути развития научных знаний (проходившего вовсе не линейно и не так последовательно, как это излагается в учебниках). С этой особенностью развития научно-технических знаний важно ознакомить учащихся с целью достижения полноценного формирования их мировоззренческой позиции.

Сейчас в школьной программе важнейший вопрос устойчивости электронных оболочек, формирующих вид Периодической системы химических элементов Д. И. Менделеева, освещается недостаточно, то есть это делается декларативно, без достаточных доказательств, убеждения на опыте и закрепления в эксперименте. Рассмотрение этого вопроса фактически замалчивается из-за отсутствия простых моделей и ограниченности изобразительных возможностей, позволяющих объяснить доступно, без избыточной сложности особенности, присущие орбитальным моделям. Таким образом, мы видим, что недостатки в содержании обучения являются следствием чрезмерной сложности методов и средств обучения, связанных не только с ограниченностью изобразительных средств, но и с несоответствием используемых моделей современному научному знанию.

Как было рассмотрено в главе 2, во второй половине ХХ века появились новые научные модели, аккумулирующие в себе новое содержание, которое не содержат в себе исторические и ныне используемые в обучении модели. Эти новые модели привносят с собой новые формы и средства обучения, использование которых позволяет откорректировать содержание, вернуть в программу обучения вопросы, которые ранее были сложны для изучения, но являлись необходимыми для формирования информационного горизонта и мировоззрения. Речь о наглядном и практическом изучении таких вопросов, как устойчивость электронных оболочек в атоме, наглядное, а не декларативное освещение таких принципиальных тем химии как Периодический закон и формирование Периодической системы химических элементов Д. И. Менделеева, образование электронных поверхностей атомов и химических соединений.

До сих пор в программе обучения остается не освещаемый в должной мере круг вопросов, а именно: конфигурация, состав и свойства электронных оболочек атома. А ведь именно особенности электронного строения атома определяют химические свойства элементов и их соединений, характер взаимодействия и динамику образования связей. До сих пор в обучении используются либо чрезмерно упрощенные модели, не отражающие строения электронных оболочек, либо модели академического уровня сложности (метод молекулярных орбиталей, рассматривающий относительное смещение электронной плотности), которые трудны и сложны для обучения даже в упрощенном варианте. Нет никакой связи между моделью электрона в виде точки, двигающейся в атоме, и орбитальной моделью, оперирующей туманными понятиями, типа «электронное облако», «смещение электронной плотности». Это является одновременно и проблемой изложения знаний для учителей и проблемой получения и усвоения знаний для учащихся. Не хватает простой и наглядной модели, позволяющей объединить эти взгляды, позволяющей совершиться переходу, а не перескоку знания из одной формы в другую. Взаимная противоречивость моделей в базовом обучении приводит к парадоксальности знания. А потенциальный раскол мировоззрения при использовании несовместимых моделей приводит к их делению на реальные и нереальные модели, находящиеся в антагонизме. Это скорее приводит к неправомерному редуцированию знания, а не его полноценному усвоению.

Носителем знаний разного уровня сложности об устройстве атома и его свойствах может являться модель кольцегранных электронных оболочек. Её методическая простота и доступность позволяет использовать её в общеобразовательной школе, в том числе и в классах гуманитарного профиля, а её вариативность и возможность использования усложнённых моделей (узнаваемо кольцегранных: волногранных, или из замкнутых в кольцо спиралей) позволяет её использовать и в классах углубленного изучения. Таким образом, появляется модель, обладающая свойством «узнавания» учащимися разного уровня информированности, имеющая достаточно широкий спектр дидактических свойств, чтобы объяснять круг изучаемых вопросов на протяжении изучения всего школьного курса.

Кольцегранные модели могут использоваться на протяжении преподавания всего курса химии, с самого начала изучения Периодического закона. Это связано с тем, что в восьмом классе Периодический закон и периодическая система химических элементов Д. И. Менделеева изучаются одновременно с ознакомлением учащихся со строением атомов элементов первых четырёх периодов. При этом не даётся характеристика разных форм электронных орбиталей (или облаков). Изучение строения электронных орбиталей может быть перенесено в углубленный курс, или ограничиться ознакомлением учащихся с вариативностью их форм. Основной упор в изучении должен быть сделан на распределении электронов, составляющих оболочку атома на соответствующих уровнях [68].

Это дает учащимся возможность сформировать долгосрочное знание о строении атома, которое не входит в противоречие с более сложными орбитальными моделями. Таким образом, при продолжении изучения химии, углублении знаний, или даже при выборе химической специализации, эти модели позволяют воспринимать новое знание как развитие уже имеющихся знаний, а не их замену, то есть сохранит преемственность знания. Это поможет сохранить целостность мировоззрения, избежать разделения на мир реальный и «мир науки», современной катастрофы «парадоксальности» знания; это сохранит культуру использования научно-технического знания, а не его отторжения как чужеродного и непонятного. Многим известен пример того, как на первом году обучения в высшей школе из уст преподавателя часто звучит фраза: «Забудьте всё, что вы учили в школе. Приступим к обучению заново». Это не просто признание бесполезности школьного знания в некоторых разделах изучения сложных понятий. Переучивание считается труднее обучения. Значительно лучше не торопиться и достигать больших целей малыми средствами. Иначе говоря, незначительные изменения содержания и отражающие их формы, методы и средства обучения значительно выгоднее полного переучивания.

Проблема неполноценности содержания обучения, порожденная либо малой информационной ёмкостью, либо сложностью и избыточной противоречивостью традиционно используемых моделей, может быть решена фрагментарным изменением содержания, связанным с введением в обучение новых моделей. Эти изменения и ожидаемые результаты кратко представлены в таблице 3.1.

Таблица 3. 1
1   2   3   4   5   6   7   8   9   10   11


написать администратору сайта