Главная страница
Навигация по странице:

  • Электронные оболочки атомов

  • Модели строения веществ

  • Диагностирующий этап

  • Исследовательский этап

  • Констатирующий этап

  • химия. Российская академия образования институт содержания и методов обучения


    Скачать 0.77 Mb.
    НазваниеРоссийская академия образования институт содержания и методов обучения
    Анкорхимия
    Дата08.10.2022
    Размер0.77 Mb.
    Формат файлаdoc
    Имя файлаdis1_chi.doc
    ТипДиссертация
    #722092
    страница9 из 11
    1   2   3   4   5   6   7   8   9   10   11
    Часть 1. «Глобус атома» знакомит учащихся с устойчивостью электронных оболочек. Пользователю предлагается выбрать количество электронов из предложенного ряда от 1 до 32-ух, из которых будет составлена модель электронной оболочки. После выбора на экране появляется изображение соответствующего кольцегранника в контурных линиях. Пользователю предлагается «раскрасить» кольцегранную модель электронной оболочки в два цвета таким образом, чтобы оболочка «не развалилась» при ее проверке на «магнитную устойчивость». Использование двух разных цветов подразумевает наличие у колец, моделирующих электроны, двух различных способов расположения в оболочке, связанных с наличием у электрона магнитных свойств (спин – характеристики «+» или «»). Проверка правильности раскрашивания осуществляется автоматически по окончании выбора цветов.

    Для правильного выбора цвета необходимо соблюдать правила чередования магнитных свойств (спин – характеристик) электронов в оболочке, что отражается различными цветами колец, участвующих в образовании кольцегранника, моделирующего электронную оболочку.

    Симметричность кольцегранной фигуры, моделирующей электронную оболочку, является одним из критериев устойчивости оболочки.

    Если пользователь убежден, что он не только правильно расставил цвета колец в оболочке, но и верно выбрал число электронов, из которых состоит симметричная оболочка, он может провести проверку оболочки на устойчивость.

    В случае ошибки оболочка разрушается, вращаясь вокруг оси, относительно которой она не является симметричной. Затем следует предложение повторить попытку. Предусмотрен режим демонстрации правильно собранных электронных оболочек: демонстрируется вращение устойчивых оболочек в виде компьютерной мультипликации.

    В части 2. «Глобус атома» проводится сборка электронного глобуса атома.

    Предлагается распределить все электроны выбранного атома по разным уровням, или возможным оболочкам с учетом заряда ядра.

    При наборе электронов на каждую оболочку на экране идет демонстрация ее заполнения.

    После окончания распределения электронов по оболочкам предоставляется время для размышлений и исправлений до выбора команды “проверка”.

    В случае неправильной сборки происходит демонстрация перестроения электронных оболочек - переходов электронов на другие уровни и правильное их распределение по оболочкам. По окончании демонстрации верного распределения электронов задача предлагается снова: информация о правильном распределении электронов скрывается для предоставления учащимся возможности самостоятельно распределить электроны по оболочкам.

    Предусмотрена показательная демонстрация правильной сборки одного сложного атома - радона (Ra). По окончании правильной сборки какого-либо атома, в качестве приза и факта окончания работы идет непрерывная демонстрация правильной “сборки - разборки” верно собранного элемента.

    Для удобства оценки результативности работы учеников в обеих частях программы предусмотрен счетчик времени работы и запись лучших результатов и фамилий исполнителей.

    Интерактивное изучение устойчивости электронных оболочек в форме компьютерного урока позволяет учащимся проверить устойчивость всех, особенно сложных 18-ти и 32–ух, электронных оболочек без потери времени на их длительную сборку в виде материальных моделей.

    Простые модели первых двух электронных оболочек полезно уже на первых уроках сконструировать во время проведения фронтальной работы. При наличии наборов «Кольцегранник» осуществляется сборка моделей завершенных электронных оболочек из 2 и из 8 колец - электронов. Очень удобным для сборки кольцегранников является использование магнитных колец (или специальных магнитных наборов).

    В процессе работы с компьютерной программой (или проведения самостоятельной работы по моделированию кольцегранных моделей электронных оболочек) у учащихся возникает вопрос об устойчивости симметричных моделей оболочек из 10 и 14 колец. Если такой вопрос не возникает, то учитель может сам акцентировать на этом внимание для понимания процесса формирования электронных оболочек атома. Модели завершенных симметричных оболочек из 10 и 14 колец отличаются правильным чередованием цветов контактирующих между собой колец, но эти оболочки не образуют периодов в Периодической системе химических элементов Д.И. Менделеева. Оболочка из 10 электронов характеризуется слабой симметрией: она имеет только одну ось симметрии. Оболочка из 14 электронов имеет оси симметрии, аналогичные оболочке из 8 электронов, но в атоме не реализуется, так как входит в конфликт с оболочкой из 8 электронов, находящейся внутри 14-ти электронной. При построении двухцветных моделей и помещении 8 внутрь 14 становится очевидной их несовместимость спин, или магнитных свойств, что приводит к слабой устойчивости 14-ти электронной оболочки и ее достраиванию до 18-ти электронной.

    Размер колец, составляющих модели электронных оболочек, отражает величину энергии связи электронов атомной оболочки и зависит от удаленности оболочки от ядра и количества электронов на оболочке. Зависимости радиуса кольца, обозначающего электрон, от заряда ядра, воздействующего на него, позволяет качественно объяснить изменение размеров электронных оболочек, позволяющее помещать внутренние оболочки из большего количества электронов в объем внешних оболочек, из меньшего количества электронов. Например, размер первых оболочек атомов элементов первого периода может отличаться в десятки (и даже сотни) раз от размеров первых оболочек элементов 4 и 5 периодов, потому что заряд ядра, воздействующий на электроны оболочки в этих атомах, отличается в десятки раз.

    Изучение устойчивых электронных оболочек в атомах позволяет подробно рассмотреть строение атома. Электронная конфигурация атомов, имеющих две и более электронные оболочки, моделируется в виде нескольких кольцегранных фигур, вложенных одна в другую и имеющих общий центр, совпадающий с ядром атома. Например, атом неона (Ne) изображается в виде двух колец, лежащих в параллельных плоскостях, внутри фигуры из восьми колец, сделанных из трубочек средней длины (таблица 1 приложения 4). При моделировании атомов, имеющих несколько электронных оболочек, рекомендуется для наглядности делать каждую оболочку каким-либо одним цветом. Особой необходимости в этом нет, поскольку значение имеет показ конкретного способа моделирования и его результат. В большинстве случаев для демонстрации достаточно собирать только модель внешней оболочки из восьми электронов, пренебрегая изображением внутренних.

    Для изучения взаимосвязи электронного строения атома элемента с его химическими свойствами учитель использует таблицу 3. «Электронные оболочки атомов» серии 2. «Строение веществ». Рассмотрим, как содержание таблицы 3 позволяет знакомить учащихся с электронным строением элементов второго периода путём сопоставления электронных схем строения атома, орбитальных и кольцегранных моделей и делать прогностические выводы о химических свойствах веществ на основании их электронного строения.

    Электронные оболочки атомов

    Электронная схема – это знаковая модель, которая не представляет объёмного образа электрона и электронной оболочки. Она удобна для отражения последовательности заполнения электронных слоев и каждой электронной оболочки. Разнонаправленность стрелок, обозначающих электроны, позволяет обозначать фундаментальное свойство электронов, «спин», или наличие у них внутреннего вращения: «+» или «–».

    Далее в таблице представлены орбитальные модели. Традиционно в курсе химии используют понятие электронной орбитали. Электронная орбиталь – это область пространства, в которой максимальна вероятность обнаружения электрона (как трактуется это в физике) или область пространства, в которой сконцентрирована его электронная плотность (как это трактуется в химии). Орбитальные модели предназначены для отражения пространственного распределения электронной плотности в объёме атома. Различные формы электронных орбиталей и их видоизменения должны отражать процессы образования химических связей. Орбитальные модели являются упрощенным отражением более сложных научных моделей. Несмотря на упрощённый характер используемых в школе форм электронных орбиталей, они оказываются сложными для изучения, поскольку для их использования приходится вводить много дополнительных понятий, таких как взаимопроникновение, перекрывание, гибридизации разных видов: sp, sp2, sp3 и другие. Также на орбитальных моделях затруднено изучение понятия спин электрона. Использование орбитальных моделей полезно учащимся, особо интересующимся химией или на факультативных занятиях.

    Во второй половине 20 века появились кольцегранные модели, более простые в изучении и использовании. Использование кольцегранных моделей позволяет демонстрировать формирование электронных оболочек в атоме без введения дополнительных понятий. Фундаментальное свойство электрона - спин (или внутреннее вращение электрона) определяется в моделях с движением заряда электрона по кольцу по или против часовой стрелки. Движение заряда (ка это известно из курса физики) приводит к появлению магнитных свойств у такой модели электрона, что объясняет стремление электронов к спариванию в атомных оболочках. Изображение магнитных свойств возможно прямым использованием кольцевых магнитов или же символическим обозначением в моделях колец красным или синим цветом (при возможности используются двуцветные кольца: одна сторона красная, другая синяя).

    С помощью кольцегранных моделей наглядно и доступно рассматриваем:

    а) электронное строение атома и образование устойчивых электронных оболочек, объясняющих периодический закон и Периодическую систему химических элементов Д.И. Менделеева;

    б) влияние электронного строения на окислительные и восстановительные свойства элемента;

    в) атомные размеры и его сравнительную реакционную способность;

    г) увеличение количества электронов на валентной оболочке и связанное с этим изменение свойств элементов в периоде.

    Кольцегранные модели объединяют в себе достоинства и электронных схем и орбитальных моделей:

    а) простота и однотипность изображения электронов;

    б) наглядное изображение спин характеристики;

    в) возможность одновременного изображение всех электронов атома при сохранении очевидности структуры каждой электронной оболочки;

    г) наглядность распределения электронов в атоме по оболочкам;

    д) равномерное распределение электронов в оболочке с учетом их спин взаимодействий;

    е) взаиморасположение пар электронов и неспаренных электронов в объёме;

    ж) демонстрация незавершенности оболочки и оценка реакционной способности элемента в зависимости от вида его внешней электронной оболочки.

    Помимо перечисленных, кольцегранные модели имеют и новые дидактические возможности: демонстрация устойчивости определенных электронных оболочек в атоме, определяющих вид Периодической системы химических элементов Д.И. Менделеева и возможность проведения модельного эксперимента для проверки их устойчивости.

    Ниже предложена логика изучения материала, не нарушающая должную преемственность понятий и способствующая формированию фундаментального целостного знания. Оптимальным приёмом обучения является диалог учителя с классом с включением фронтального фрагментарного моделирования.

    В атоме лития (Li) пара электронов внутренней оболочки с разными спин характеристиками обозначена двумя кольцами разных цветов, расположенными параллельно и симметрично относительно ядра. Один неспаренный электрон внешней оболочки занимает явно неустойчивое положение. Такое положение электрона внешней оболочки определяет повышенную реакционную способность атома, его сильные восстановительные свойства.

    Модель электронных орбиталей атома лития менее информативна, но также показывает спаренные две s- орбитали первой оболочки и одну неспаренную s- орбиталь внешней оболочки в виде шаров разного размера. Неспаренность орбитали внешнего электрона обозначается менее ярким цветом.

    Каждый последующий элемент отличается на один электрон и на одно зарядовое число ядра. Последовательность застройки электронной оболочки по длине периода видна как увеличение числа колец, обозначающих электроны, на второй от ядра оболочке. Увеличение заряда ядра подразумевается, но никак не отражается в моделях электронных орбиталей, а в кольцегранных моделях показано косвенно, меньшим размером колец, обозначающих электроны. Вообще размер колец, обозначающих электроны, зависит от заряда ядра и близости оболочки к ядру атома.

    На кольцегранной модели атома бериллия (Be) видно, что электроны расположены симметрично, относительно ядра. На орбитальной модели показано цветом, завершенность второго s-слоя. Но это справедливо только для атома (Be), внешняя оболочка которого тождественна внутренней и в силу симметричности кажется завершенной.

    К атому бора (B) применимо общее правило застройки электронной оболочки: электроны сначала занимают все свободные неспаренные орбитали (правила Хунда). Однако по традиции, принятой ещё в 50-е года прошлого века, s- орбитали показывают всегда спаренными. На орбитальной модели показаны спаренных две s- орбитали и одна p- орбиталь, что не соответствует правилу заполнения орбиталей (правило Хунда), но исправляется при объяснении образования химической связи с помощью введения в понятия возбуждения и распаривания s- орбиталей и дальнейшей их гибридизации совместно с p- орбиталью. Таким образом, с помощью использования понятия о гибридизации s- и p- орбиталей, объясняются формы соединений атомов бора, характеризующиеся углами 120º в соединениях BCl3 или B(OH)3.

    При использовании кольцегранных моделей не требуется введения понятия гибридизации. На кольцегранной модели атома бора все электроны внешней оболочки показаны одинаковыми кольцами одного цвета. Три кольца, обозначающие электроны внешней валентной оболочки атома, взаимно располагаются так, чтобы быть равноудаленными от ядра (в гранях треугольной призмы). Углы между их нормалями составляют 120º, что при образовании связей приводит к аналогичной величине валентных углов 120º.

    Изображение слабосвязанных валентных электронов элементов 1, 2, и 3 групп в виде кольцегранных моделей конструктивно затруднено, так как кольца, их изображающие, не должны соприкасаться. При проведении фронтальных работ рекомендуется моделировать электронные оболочки, начиная с элементов 4 группы главных подгрупп. Они представляют собой или восьмигранники, в которых не хватает нескольких колец, или завершенные восьмигранники, в которых «неспаренные электроны» изображаются сразу парой колец: одно из которых цветное, изображающее электрон, а второе, расположенное напротив первого, – бесцветное, подчёркивающее его «неспаренность» (рис. 1). Таким образом, в моделях недостающие до завершения оболочки электроны (или незаполненные орбитали) изображаются бесцветными кольцами (рис. 17, 32).

    Атом углерода (С) имеет на внешней оболочке 4 электрона. На орбитальной модели это показано появлением второй неспаренной p- орбитали. Соединение углерода с ординарными связями – метан (CH4) характеризуются углами 109º. Для объяснения образования такого простого соединения с помощью орбитальных моделей приходится использовать понятие о гибридизации s- и p- орбиталей, предваряя его понятием перехода атома в возбужденное состояние и распаривания s–орбиталей.

    При использовании кольцегранных моделей всего изложенного выше не требуется. Кольца, обозначающие электроны внешней валентной оболочки атома углерода взаимно расположены в пространстве таким образом, чтобы обеспечить максимальную взаимную и равную удаленность - то есть в гранях тетраэдра под углами 109º. Синий цвет колец обозначает одинаковую спин характеристику - все электроны внешней оболочки неспаренные. Оболочка не завершена. Атом реакционноспособен. Четыре незаполненных орбитали показывают, что его валентность равна четырем. Причем как в сторону окисления, так и восстановления.

    У азота (N) только три незаполненных орбитали, что объясняет его валентность как окислителя, равную трем, а как восстановителя три и пять.

    Как отмечают методисты [57], важно, чтобы учащиеся имели представление не только о числе электронов на внешней оболочке атома, но и о том, как они распределены по орбиталям. Обычно для этой цели используются схемы заполнения орбиталей. Кольцегранные модели позволяют это демонстрировать на модельном эксперименте. Например, наличие неспаренных электронов в оболочке может изображаться наличием бесцветных колец. Они располагаются напротив цветных колец и обозначают отсутствие электрона с противоположным знаком спин. Они же представляют собой вакантные места для акцепторных электронов или атомов водорода. Например, шесть электронов атома кислорода на внешней оболочке распределяются таким образом, что составляют незавершенную фигуру из восьми колец (кольцегранный октаэдр), в которой не хватает двух колец до завершения оболочки. Эти два вакантных места в оболочке кислорода могут быть заполнены акцепторными электронами или электронами атомов водорода (рис. 25). Такая модель соответствует объяснению электронной схемы [57, с. 41]: в молекуле воды два неспаренных электрона связывают атом кислорода с двумя атомами водорода. Подробнее строение молекулы воды рассматривается в таблицах 4. «Модели строения веществ» и 11. «Водородная связь» серии 2 «Строение веществ» (приложение 4).

    Размеры колец, составляющие кольцегранные модели, отличаются. Их размер качественно отражает величину энергии связи электронов в оболочке. Чем больше энергия связи электрона в оболочке, тем меньше радиус кольца, моделирующего электрон. А чем меньше ковалентный радиус, тем больше электроотрицательность, или так называемое сродство к электрону. В представленном ряду у атома фтора радиус наименьший, а электроотрицательность наибольшая. Он проявляет максимальные окислительные свойства.

    Одновременное использование для обучения как минимум этих трёх рассмотренных моделей: электронная схема, кольцегранная и орбитальная модели, обеспечивает наиболее полное изучение материала при недостаточном количестве академических часов, выделенных на предмет. При возможности рекомендуется использование моделей Гилеспи (электронных пар) и усложнённых кольцегранных моделей, скомбинированных с моделями магнитных силовых линий в виде спиралей, обвивающих кольца, более наглядно изображающих взаимодействие электронов в оболочке.

    При изучении вопросов, имеющих отношение к теме «Строение веществ», полезно использовать различные модели строения веществ. Для методической поддержки следует сочетать моделирование с использованием таблицы 4. «Модели строения веществ» одновременно с таблицей 3. «Электронные оболочки атомов», так как модели строения веществ рассматриваются на примерах соединений веществ 2 периода.

    Модели строения веществ

    В таблице представлены три типа объёмных моделей. Первый – это масштабная модель (Стюарта- Бриглеба), представляющая собой целый класс однотипных простых моделей (включая скелетные и шаро-стержневые) не отражающих электронную структуру моделируемых соединений; второй - это кольцегранная - наиболее информативная модель, отражающая подробно электронную структуру веществ; третий – это орбитальная модель, рассматривающая виды и изменения электронных орбиталей в процессе образования химических связей.

    Такое сочетание позволяет соблюсти определённую преемственность при изучении строения веществ, а использование комплекса различных приёмов моделирования и видов моделей способствует пониманию и формированию целостных представлений об особенностях химической связи, структуры веществ, их свойств.

    В таблице используется общепринятое цветовое кодирование: салатовый цвет – хлор, черный – углерод, красный – кислород, голубой – азот, зелёный – фтор, желтовато – белым обозначен водород, серым – бор.

    Масштабная модель метана (CH4) выглядит комбинацией одного усечённого плоскостями чёрного шара - атома углерода и четырёх желтых усечённых шаров – атомов водорода.

    На орбитальной модели показан результат гибридизации s- и p- орбиталей и спаривания четырёх гибридизированных орбиталей углерода с орбиталями атомов водорода при образовании связи.

    Метан (CH4) имеет на внешней оболочке 4 электрона углерода, которые в процессе образования химической связи спариваются с электронами атомов водорода. На кольцегранной модели это показано парным расположением черных колец углерода напротив бело - жёлтых колец водорода. Электроны образуют пару симметрично относительно ядра атома. Четыре таких пары образуют завершенную молекулярную оболочку. Над центрами жёлтых колец находятся ядра атомов водорода. Для отличия от более крупных ядер они показаны оранжевым цветом. Они не находятся ровно в центре жёлтых колец из-за отталкивания от ядра атома углерода.

    Использование кольцегранных моделей необходимо сочетать с традиционными способами закрепления знаний, например, используя опорные схемы и тренировочные упражнения, построенные по разделу «Углероды» [95]. Схема 1: Метан, строение молекулы метана, ковалентные связи C-H, направление связей определяется валентным углом 109º28', тип кристаллической решетки – молекулярная. Кольцегранная модель молекулы (рис. 21, таблица приложения 1) метана вполне подходит для демонстрационных целей, так как позволяет наглядно отобразить всё перечисленное в схеме 1. Схема 2: Гомологический ряд метана C nH2n+2 -общая формула предельных углеводородов (алканов), валентные углы 109º28', строение цепи – зигзагообразное, сходные химические свойства, тип кристаллической решетки – молекулярная. Моделирование соединений по схеме 2 в виде кольцегранников осуществляется соединением изготовленных ранее моделей простых атомов и молекул. Например, для моделирования этанола, или этилового спирта (рис. 29) нужно взять модель молекулы метана (рис. 21) и заменить два атома водорода соответствующими радикалами -OH и -CH3 (рис. 26, 27).

    В таблице 4 (приложение 4) представлены разные модели молекулы воды. В молекуле воды (H2O) два водородных радикала. Деформация валентного (тетраэдрического в симметричном октаэдре) угла достигает величины 104.5º. На масштабной и орбитальной моделях это показано в декларативной форме. С помощью кольцегранной модели можно объяснить уменьшение валентного угла. Водородные радикалы отличаются меньшим размером колец, моделирующих атомы водорода, что и приводит к деформации всей электронной оболочки молекулы с уменьшением валентных углов.

    Расположение ядер атомов водорода вне центров электронов – колец из-за отталкивания от центрального ядра молекулы является причиной их повышенной подвижности, а также способности к образованию водородных связей, которая часто реализуется молекулами аммиака и воды.

    При необходимости возможна модельная демонстрация отличия гидроксил иона OH от одной молекулы воды (корректней её называть структурной единицей воды): H2O. Модель H2O состоит из шести колец среднего размера красного цвета – электронов кислорода и двух колец желтого цвета малого размера – атомов водорода (рис. 19). Отличие иона OH заключается в том, что одно из двух колец желтого цвета, обозначающих водород, имеет средний размер (рис. 24). Желтый цвет кольца и его размер, больший, чем у атома водорода, обозначает, что этот электрон был захвачен атомом кислорода, но из-за отсутствия протона (или его потери) атомом водорода не является.

    Вид и относительные размеры кольцегранных моделей электронных оболочек веществ демонстрируют реакционную способность моделируемых веществ. Успешному изучению этого материала способствует представление информации в проблемно-исследовательском плане. Постановка проблемы осуществляется с помощью заданий (лабораторная работа № 2) и наводящих вопросов. Окислительная способность веществ тем больше, чем ближе оболочка к завершению и чем меньше ее диаметр, то есть чем меньше ковалентный радиус и больше энергия связи. Размеры колец, составляющие кольцегранные модели, качественно отражают величину энергии связи электронов в оболочке. Чем больше энергия связи электрона в оболочке, тем меньше радиус кольца, моделирующего электрон и, следовательно, меньше ковалентный радиус всего соединения. Решение проблемы и усвоение информации о взаимосвязи радиусов колец и энергии связи может происходить в процессе лабораторной работы. Например, атом галогена в кольцегранном виде изображается фигурой из семи колец (таблица 4 приложения 4), малый размер которых отражает величину их энергии связи электронов в атоме. Полезно предложить учащимся составить разные модели веществ (например, HCl) и сопоставить их по функциональным возможностям, то есть по возможностям представления тех или иных особенностей изучения материала.

    Масштабные модели (Стюарта-Бриглеба) своими размерами отражают в целом величины ковалентных радиусов элементов или их соединений. Например, в представленном ряду у атома фтора радиус наименьший, а электроотрицательность наибольшая. Однако масштабные модели не отражают электронную структуру моделируемых соединений - с их помощью удобно изучать многоатомные соединения, предварительно изучив их электронное строение с помощью кольцегранных моделей. Орбитальная модель соединения HF при полном ее рассмотрении сложна и не информативна, поэтому часто изображается только одна p- орбиталь атома фтора, спаривающаяся с s- орбиталью атома водорода.

    Соединение простейшего атома - водорода с атомом фтора на кольцегранной модели выглядит просто включением атома водорода, а именно, одного электрона в виде кольца вместе с его ядром - протоном в электронную оболочку атома фтора. Электрон атома водорода позволяет завершить электронную оболочку атома фтора, а притянутый протон позволяет сохранять общий нейтральный заряд соединения. Однако протон – ядро атома водорода становится подвижным из-за отталкивания от ядра фтора. При его отрыве образуются ионы F и H+. Таким образом, кольцегранные модели позволяют демонстрировать процессы образования ионов.

    Ионная связь образуется между атомами, в сильной степени различающимися по электроотрицательности, например, между типичными (щелочными) металлами и типичными неметаллами – галогенами. Так если атом фтора, обладающий максимальной электроотрицательностью и малыми размерами, приблизится к сравнительно большому атому цезия с почти минимальной электроотрицательностью, то атом фтора так сильно воздействует на электронную оболочку атома цезия, что может перетянуть к себе его валентный электрон.

    Ионная связь


    Изучение ионной связи желательно начинать с эксперимента – показа горения натрия в хлоре. Уместно поставить перед учащимися вопрос об условиях реакции и подвести их к предположению о том, что для начала реакции требуется нагревание. На таблице «Ионная связь» (приложение 4) схематически рассмотрено взаимодействие металла – натрия и неметалла – хлора. Мы видим последовательные процессы, приводящие к образованию положительного иона натрия и отрицательного иона хлора, и соединение их в кристаллическую решетку хлорида натрия, или поваренной соли которая имеет кубическую гранецентрированную решетку, состоящую из равного количества ионов Na+ и Cl.

    Здесь, как и в предыдущем случае, уместно сформулировать перед учащимися проблему, касающуюся механизма образования химической связи, и с помощью кольцегранных моделей подвести их к её разрешению.

    Схема процесса отдачи электрона атомом натрия и его присвоение атомом хлора в таблице показана с помощью простых моделей Стюарта-Бриглеба, изображающих все объекты в виде шариков. (С точки зрения электродинамики нейтральные атомы вовсе не должны стремиться к превращению в ионы).

    Для объяснения причин превращения электрически нейтральных атомов в ионы в таблице помещена схема процесса, изображенная с помощью кольцегранных моделей, отражающих количество и расположение всех электронов атомов на оболочках. У атома натрия внешняя оболочка состоит из единственного электрона. Это неустойчивое состояние показано наличием слабо связанного (незакрепленного) электрона в виде кольца. Для отдачи электрона натрием необходимо металл нагреть (сообщая электрону повышенную подвижность) и поместить в банку с хлором. У атомов хлора внешняя оболочка составлена из семи электронов, образующих незавершенную конфигурацию устойчивой оболочки из восьми электронов – кольцегранника, у которого не хватает одного кольца до создания сверхсимметричной формы из восьми колец (модель устойчивой завершенной оболочки). Формы электрических и магнитных полей этой незавершенной оболочки из семи электронов создают своего рода ловушку для недостающего восьмого электрона, который призван завершить оболочку и придать ей правильный симметричный вид. Выигрыш по энергии связи от завершения оболочки превышает энергию связи одиночного электрона в атоме натрия. Именно по этой причине нейтральные атомы переходят в состояние ионов, имеющих завешенные оболочки: у хлора с избытком одного электрона, у натрия с недостатком.

    Полезно здесь и поставить вопрос об изменении размеров ионов по сравнению с размерами атомов. На примере натрия и хлора проявляется общая закономерность в изменении размеров положительных и отрицательных ионов по сравнению с нейтральными атомами: отдача электрона приводит к уменьшению размеров соответствующего иона, а присоединение электрона (восстановление) атомом галогена – к увеличению размеров соответствующего отрицательного иона. Кроме того, уменьшение размеров катиона происходит в большей степени, чем увеличение аниона по сравнению с нейтральными атомами тех же элементов. К этому выводу учащиеся способны прийти без дополнительных объяснений учителя, только лишь рассматривая электронное строение атомов, превращающихся в ионы, поскольку очевидно, что у катиона число электронных оболочек стало на одну меньше, чем у нейтрального атома, а у аниона – осталось без изменения (увеличилось только количество электронов в оболочке).

    На схеме процесса образования ионной пары (Na+Cl ) относительные размеры атомов и ионов даны приблизительно. В схеме кристалла пропорции ионов соблюдены.

    Возможность соблюдения пропорций ионных радиусов ионов и ковалентных радиусов при изображении соединений с ковалентными связями является важной отличительной чертой наборов для сборки моделей атомов и молекул в виде кольцегранников, которые можно предложить учащимся собрать, используя известные примеры (вода, метан). Это качество позволяет акцентировать внимание на взаимозависимости энергии связи соединения и его относительных размеров. На это особенно обращается внимание благодаря необходимости подготовки длин используемых элементов. Точных соотношений можно добиться, обрезая трубочки до нужной длины. Для этого достаточно, используя справочные данные о величинах ионных радиусов, составить пропорцию радиусов моделируемых ионов и длин трубочек для сборки. Например, модель ионной пары поваренной соли Na+Cl (таблица приложения 1).

    Соблюдение пропорций длин трубочек, используемых для сборки моделей атомов разных элементов, особенно важно при изучении строения органических веществ, в частности соединений с ковалентныи связями (рис. 30, 31, 34).

    Различные виды ковалентных связей, одинарные и двойные, полярные и неполярные удобно изучать с помощью кольцегранных моделей.

    Ковалентная связь


    В процессе изучения природы химической связи учащиеся приходят к пониманию механизма образования ковалентных связей вследствие образования общей электронной оболочки для ядер атомов, входящих в соединение. Эти выводы могут быть сформированы учащимися под руководством учителя и сводятся к следующим положениям:

    • Ковалентная связь образуется между двумя атомами в случае объединения их электронных оболочек, что происходит в случае невозможности образования завершенной оболочки у каждого атома.

    • Завершение электронных оболочек происходит не за счёт присоединения электрона, что имеет место в ионной связи, а за счёт использования для завершения электронной оболочки одного атома электронной оболочки другого атома. Таким образом, происходит образование общей молекулярной оболочки.

    • Когда связь образована одинаковыми атомами, то электронная оболочка симметрично окружает ядра атомов, и мы говорим об образовании неполярной связи.

    • Если входящие во взаимодействие атомы различаются по электроотрицательности, то образуется полярная связь. Молекулярная оболочка (и электронная плотность) смещена в сторону наиболее электроотрицательного атома.

    Иллюстрацией этих положений являются рисунки и схемы таблицы 8. «Ковалентная связь» приложения 4.

    Соединение двух атомов водорода в молекулу осуществляется электронами, что на схеме показано точками или стрелочками. На рисунке видно как масштабные модели атомов водорода соприкасаются и деформируются, что обозначает перекрывание электронных орбиталей в молекуле водорода. На кольцегранных моделях взаимодействие показано сближением колец, обозначающих электроны. Сближение ядер атомов за счёт взаимодействия их электронных орбиталей ведёт к уменьшению внутренней энергии молекулы. Следовательно, образование связи энергетически выгодный процесс и сопровождается выделением теплоты – это экзотермический процесс.

    Аналогично показано образование полярной связи в результате перекрывания электронных орбиталей и слияния электронных оболочек атомов водорода и хлора. Более подробно процесс образования общей электронной оболочки показан с помощью кольцегранных моделей. Электронная оболочка атома хлора достраивается до завершенного вида с помощью электрона атома водорода. Отличие от иона хлора здесь в том, что протон – ядро атома водорода остаётся в центре кольца – электрона атома водорода. Неполярный характер связи виден в том, как расположен протон – ядро атома водорода. Испытывая отталкивание от ядра атома хлора, он выталкивается из центра кольца: его электронная плотность смещается в сторону хлора.

    Двойные ковалентные связи также могут иметь полярный или неполярный характер. Так, например, два атома сильного окислителя – кислорода образуют соединение с двойной связью. Электронная плотность равномерно распределена около двух ядер атомов в случае их равной электроотрицательности (молекула кислорода O2) или же может смещаться в сторону более сильного окислителя, в случае связи атомов разной электроотрицательности.

    Интересным является соединение углекислого газа (CO2). Проведите опрос учащихся: “К какому виду относится ковалентная связь в этом соединении”?

    Верным будет являться развернутый ответ:

    1. Соединение с ковалентной связью характеризуется образованием общей электронной оболочки для нескольких входящих в соединение атомов;

    2. Разность значений электроотрицательности атомов углерода и кислорода определяет полярный характер связи C=O;

    3. Из-за симметричного расположения атомов кислорода относительно атома углерода, полярность соединения не бросается в глаза и проявляется только в перераспределении электронной плотности на атоме углерода.

    Таким образом, приведённых выше примеров достаточно, чтобы показать основные приёмы использования комплекса с включением кольцегранных моделей при изучении строения вещества в курсе химии средней школы.

    Имея в виду тот факт, что в процессе изучения химии традиционные модели достаточно хорошо усвоены учителями, а методика использования комплекса с включением кольцегранных моделей является новой, предложен примерный перечень лабораторных и практических работ по неорганической и органической химии, проводимых с использованием кольцегранных моделей в процессе изучения курса химии в средней школе (приложение 2).

    3.3 Экспериментальная проверка педагогической эффективности

    комплекса моделей атомов и молекул для изучения строения вещества

    в курсе химии средней школы.
    Конструирование комплекса предусматривало проведение эксперимента и апробирования отдельных компонентов комплекса с целью не только наиболее рационального состава комплекса и его включения в систему школьного образования, но и достижения более высокого качества знания учащихся.

    Педагогический эксперимент включал три этапа: диагностирующий, исследовательский и констатирующий.

    Диагностирующий этап эксперимента преследовал цель выявить готовность учителей к использованию новых кольцегранных видов моделей и целесообразность введения их в комплекс моделей атомов и молекул для изучения строения вещества в курсе химии средней школы, сопровождающиеся изменением в содержании образования для улучшения качества знания.

    Были выявлены следующие проблемы, возникающие у учителей в процессе преподавания учебного материала по теме «Строение вещества»:

    1. Учитель не может объяснить противоречивость и несовместимость различных моделей электрона из-за отсутствия в содержании образования информации о способах совмещения в элементарной частице противоречивых свойств, определяемых в научных экспериментах.

    2. Из-за сложности объяснения устойчивости электронных оболочек, определяющих вид Периодической системы химических элементов Д. И. Менделеева, учитель вынужден ограничиваться ссылкой на факт экспериментальной и теоретической подтверждённости устойчивости определённых электронных оболочек.

    3. Без ответа остаётся вопрос о взаиморасположении электронов на внутренних оболочках атомов третьего и больших периодов.

    4. Учитель не может продемонстрировать или объяснить на модели спин электрона в рамках курса химии средней школы.

    5. Остаётся неочевидной причина образования иона: захвата нейтральным атомом электрона с превращением последнего в ион. Дидактические возможности объяснения учителя ограничиваются лишь схематическим отражением этого процесса и рассказом о стремлении оболочек атомов к завершенной форме.

    6. Сложности возникают при объяснении образования химических соединений с помощью орбитальных моделей: неубедительно выглядит процесс образования химических связей и недостаточно наглядно отражен процесс образования валентных углов.

    7. Вводится много понятий, сложных для восприятия учащихся в отрыве от изучения основ квантовой физики и химии: возбуждённое состояние электрона, разнообразные гибридизации орбиталей, перераспределение и смещение электронной плотности.

    При обсуждении этих недостатков с учителями химии было выяснено, что проблема качественного усвоения знания о строении вещества учащимися может решаться различными способами:

    1. за счёт введения углублённо-профильного изучения учебного материала;

    2. модернизацией содержания образования и сокращения объёма материала в результате введения специального дидактического инструментария в виде комплекса с включением новых кольцегранных моделей.

    Таким образом, выявлена готовность учителей к использованию новых упрощенных (кольцегранных) видов наглядных моделей, обоснована целесообразность введения их в комплекс моделей атомов и молекул для изучения строения вещества в курсе химии средней школы.

    Исследовательский этап эксперимента преследовал цель оснастить учителя и учащихся дидактическим инструментарием для организации различных видов и форм деятельности педагога и учащихся. Для ознакомления учащихся с информацией, которая связно и целостно отражает строение вещества, особенно важно предоставить в первую очередь информацию учителю, отличающуюся взаимосвязанным изложением различных уровней организации вещества, фрагментарно изложенных в различных разделах учебников и методической литературы.

    В разделе 3.1 были показаны те изменения, которые целесообразно ввести в курс химии при изучении раздела «Строение веществ» по темам «Периодический закон. Строение атома. Химическая связь». Возможности комплекса изложены в схеме 3.1.

    Примерное тематическое планирование материалов программы, организационные формы и методические приёмы изложены в разделе 3.2 в виде таблицы 3.2, а также методической поддержки деятельности учителя в виде таблиц серии «Строение вещества» (приложение 4) и примерного перечня лабораторных и практических работ по неорганической и органической химии, проводимых с использованием кольцегранных моделей при изучении курса химии в средней школе (приложение 2).

    Таким образом, создан «инструментарий» для работы учителя в областях «дефицита наглядности», продемонстрированы методические приёмы и проверена возможность использования комплекса моделей с включением кольцегранных моделей для демонстрации и проведения практических работ по неорганической и органической химии.

    Констатирующий этап эксперимента нацелен на проверку педагогической эффективности влияния комплекса или его отдельных компонентов на качество усвоения учащимися материала.

    В данном исследовании применён экспертно-балльный метод определения качества средств и педагогической эффективности средств обучения, разработанный Центром средств обучения Института общего среднего образования РАО.

    Оценка качества обучения, в частности педагогической эффективности, при использовании различных компонентов комплекса моделей, включая кольцегранные, осуществляется результатам оценки показателей.

    Наибольшую значимость при сравнении педагогической эффективности комплекса (интеграции его отдельных компонентов) имеют, по мнению педагогов – экспертов, следующие четыре показателя:

    1. Информативность (соответствие содержанию изучаемого вопроса).

    2. Доступность (лёгкость восприятия и способы подачи информации);

    3. Затраты времени (на изложение и усвоение материала учащимися);

    4. Освоения комплекса (подготовленность учителя к использованию);

    Для сравнительной оценки качества обучения (педагогической эффективности) выбраны фрагменты информации (информационные блоки), предназначенной для изучения и усвоения учащимися:

    1. Модельное представление электрона и его свойств;

    2. Взаимодействие электронов в оболочке атома;

    3. Образование электронных оболочек;

    4. Проверка устойчивости электронных оболочек;

    5. Распределение электронов в атоме по оболочкам;

    6. Окислительно-восстановительные свойства элементов;

    7. Степень окисления и валентность;

    8. Изучение разных видов ковалентных связей;

    9. Направленность связей.

    Оценка качества обучения при использовании компонентов комплекса проводилась способом сравнения эффективности их использования по каждому из показателей. Для оценки использовалась четырёхуровневая система оценки, показывающая степень приспособленности комплекса и отдельных его компонентов к дидактическим потребностям педагога и учащихся (таблица 3.3).

    Таблица 3.3

    Оценка степени приспособленности комплекса

    Степень приспособленности

    Число баллов


    Полная (хорошая) приспособленность

    4

    Значительная (преимущественная)

    3

    Малая (недостаточная) приспособленность

    2

    Незначительная приспособленность

    1

    Неприспособленность (несоответствие)

    0
    1   2   3   4   5   6   7   8   9   10   11


    написать администратору сайта