Статистика. Статистика Предмет и задачи статистики
Скачать 1.24 Mb.
|
Понятие индексовВ статистике под индексом понимается относительная величина (показатель), выражающая изменение сложного экономического явления во времени, в пространстве или по сравнению с планом. В связи с этим различают динамические, территориальные индексы, а также индексы выполнения плана. Основной формой общих индексов являются агрегатные индексы. Достижение в сложных статистических совокупностях сопоставимости разнородных единиц осуществляется введением в индексные отношения специальных сомножителей индексируемых величин. Такие сомножители называются соизмерителями. Они необходимы для перехода от натуральных измерителей разнородных единиц статистической совокупности к однородным показателям. При этом в числителе и знаменателе общего индекса изменяется лишь значение индексируемой величины, а их соизмерители являются постоянными величинами. В качестве соизмерителей индексируемых величин выступают тесно связанные с ними экономические показатели: цены, количество и др. Произведение каждой индексируемой величины на соизмеритель образует в индексном отношении определённые экономические категории. Пример.
При определении по данным таблицы статистических индексов первый период принимается за базисный, в котором цена единицы товара принимается , а количество — . Второй период принимается за текущий (или отчетный), в котором цена единицы товара обозначается , а количество — . Индивидуальные индексы показывают, что в текущем периоде по сравнению с базисным цена на товар А повысилась на 25%, на товар Б осталась без изменения, а на товар В снизилась на 33%. Количество реализации товара А возросло на 27%, товара Б — на 25%, а товара В — на 50%. При определении общего индекса цен в агрегатной форме в качестве соизмерителя индексируемых величин и могут приниматься данные о количестве реализации товаров в текущем периоде . При умножении на индексируемые величины в числителе индексного отношения образуется значение , сумма стоимости продажи товаров в текущем периоде по ценам того же текущего периода. В знаменателе индексного отношения образуется значение , т.е. сумма стоимости продажи товаров в текущем периоде по ценам базисного периода. Агрегатная формула такого общего индекса цен имеет следующий вид: = (1) Расчёт агрегатного индекса цен по данной формуле предложил немецкий экономист Г. Пааше, поэтому он называется индексом Пааше. Применяем формулу для расчёта агрегатного индекса цен по данным табл.1: числитель индексного отношения =25 * 9 500 + 30 * 2 500 + 10 * 1 500 = 327 500 руб. знаменатель индексного отношения = 20 * 9 500 + 30 * 2 500 + 15 * 1 500 = 287 500 руб. Полученные значения подставляем в формулу 1: = или 113,9% Применение формулы 1 показывает, что по данному ассортименту товаров в целом цены повысились в среднем на 13,9%. При другом способе определения агрегатного индекса цен в качестве соизмерителя индексируемых величин и могут применяться данные о количестве реализации товаров в базисном периоде . При этом умножение на индексируемые величины в числителе индексного отношения образует значение , т.е. сумму стоимости продажи товаров в базисном периоде по ценам текущего периода. В знаменателе индексного отношения образуется значение , т.е. сумма стоимости продажи товаров в базисном периоде по ценам того же базисного периода. Агрегатная формула такого общего индекса имеет вид: = (2) Расчёт общего индекса цен по данной формуле предложил немецкий экономист Э. Ласпейрес, и получил название индекса Ласпейреса. Применяем формулу для расчёта агрегатного индекса цен по данным табл.1: числитель индексного отношения = 25 * 7 500 + 30 * 2 000 + 10 * 1000 = 257 500 руб. знаменатель индексного отношения = 20 * 7 500 + 30 * 2 000 + 15 * 1 000 = 225 000 руб. Полученные значения подставляем в формулу 2: =или 114,4% Применение формулы 2 показывает, что по данному ассортименту товаров в целом цены повысились в среднем на 14,4%. Таким образом, выполненные по формулам 1 и 2 расчёты имеют разные показания индексов цен. Это объясняется тем, что индексы Пааше и Ласпейреса характеризуют различные качественные особенности изменения цен. Индекс Пааше характеризует влияние изменения цен на стоимость товаров, реализованных в отчётном периоде. Индекс Ласпейреса показывает влияние изменения цен на стоимость количества товаров, реализованных в базисном периоде. Другим важным видом общих индексов, которые широко применяются в статистике, являются агрегатные индексы физического объёма товарной массы. При определении агрегатного индекса физического объёма товарной массы в качестве соизмерителей индексируемых величин и могут применяться неизменные цены базисного периода . При умножении на индексируемые величины в числителе индексного отношения образуются значение , т.е. сумма стоимости товарной массы текущего периода в базисных ценах. В знаменателе — , т.е. сумма стоимости товарной массы базисного периода в ценах того же базисного периода. Агрегатная форма общего индекса имеет следующий вид: = (3) Поскольку, в числителе формулы 3 содержится сумма стоимости реализации товаров в текущем периоде по неизменным (базисным) ценам, а в знаменателе — сумма фактической стоимости товаров, реализованных в базисном периоде в тех же неизменных (базисных) ценах, то данный индекс является агрегатным индексом товарооборота в сопоставимых (базисных) ценах. Используем формулу 3 для расчёта агрегатного индекса физического объёма реализации товаров по данным табл.1: числитель индексного отношения = 9 500 * 20 + 2 500 * 30 + 1 500 * 15 = 287 500 руб. знаменатель индексного отношения = 7 500 * 20 + 2 000 * 30 + 1 000 * 15 = 225 000 руб. Полученные значения подставляем в формулу 3: = или 127,8% Применение формулы 3 показывает, что по данному ассортименту товаров в целом прирост физического объёма реализации в текущем периоде составил в среднем 27,8%. Агрегатный индекс физического объёма товарооборота может определяться посредством использования в качестве соизмерителя индексируемых величин и цен текущего периода . Агрегатная формула общего индекса будет иметь вид: = (4) числитель индексного отношения = 9 500 * 25 + 2 500 * 30 + 1 500 * 10 = 327 500 руб. знаменатель индексного отношения = 7 500 * 25 + 2 000 * 30 + 1 000 * 10 = 257 500 руб. Полученные значения подставляем в формулу 4: = или 127,2% Применение формулы 4 показывает, что по данному ассортименту товаров в целом прирост физического объёма реализации в текущем периоде составил в среднем 27,2%. Аналогичным образом производится расчёт индекса себестоимости, при этом сравниваются суммы затрат в производстве в отчётном периоде (— числитель индекса) с суммой затрат в производстве на продукцию отчётного периода по себестоимости базисного периода (— знаменатель). Индексы с постоянными и переменными весами. При изучении динамики коммерческой деятельности приходится производить индексные сопоставления более чем за два периода. Поэтому индексные величины могут определяться как на постоянной, так и на переменной базах сравнения. При этом, если задача анализа состоит в получении характеристик изменения изучаемого явления во всех последующих периодах по сравнению с начальным, то вычисляются базисные индексы. Например, сопоставление объёма розничного товарооборота II, III и IV кварталов с I кварталом. Но если требуется охарактеризовать последовательно изменения изучаемого явления из периода в период, то вычисляются цепные индексы. Например, при изучении объёма розничного товарооборота по кварталам года сопоставляют товарооборот II квартала c I, III — cо II и IV — с III кварталом. В зависимости от задачи исследования и характера исходной информации базисные и цепные индексы исчисляются как индивидуальные, так и общие. Способы расчёта индивидуальных базисных и цепных индексов аналогичны расчёту относительных величин динамики. Общие индексы в зависимости от их вида вычисляются с переменными и постоянными весами — соизмерителями. Используя индексный ряд за несколько периодов, можно получить динамику стоимости продукции и динамику товарооборота в неизменных ценах, т.е. в ценах какого - то одного прошлого периода. Такие индексные ряды называются индексами с постоянными весами. Для них действует правило: произведение цепных индексов даёт индекс базисный. Средние индексы. Всякий агрегатный индекс может быть преобразован в средний арифметический из индивидуальных индексов. Для этого индексируемая величина отчётного периода, стоящая в числителе агрегатного индекса, заменяется произведением индивидуального индекса на индексируемую величину базисного периода. Так, индивидуальный индекс цен равен , откуда . Следовательно, преобразование агрегатного индекса цен в средний арифметический имеет вид: == Аналогично индекс себестоимости равен , откуда , следовательно, ==, Аналогично индекс физического объёма продукции (товарооборота) равен , откуда , следовательно, == Расчеты недостающих индексов с помощью индексных систем. Многие экономические индексы тесно связаны между собой и образуют индексные системы. Так, индекс цен связан с индексом физического объема товарооборота или физического объема продукции, образуя следующую индексную систему: или Произведение индекса цен на индекс физического объема товарооборота или продукции дает индекс физического объема товарооборота в фактических ценах, или индекс стоимости продукции. Индекс себестоимости промышленной продукции связан с индексом физического объема продукции по себестоимости, образуя следующую индексную систему: или Произведение индекса себестоимости продукции на индекс физического объема дает индекс затрат в производстве. Используя индексы системы, можно по двум известным индексам найти третий, неизвестный. 15. Средний арифметический и средний гармонический индексы физического объема продукции. |