Язык MatLab является высокоуровневым. Структурные характеристики системы
Скачать 0.98 Mb.
|
Оптимизация процесса выбора поставщикаДля оптимизации процесса выбора поставщика воспользуемся методом анализа иерархий. Краткие теоретические сведенья о методе анализа иерархийПри принятии управленческих решений и прогнозировании возможных результатов лицо, принимающее решение, обычно сталкивается со сложной системой взаимозависимых компонент (ресурсы, желаемые исходы или цели, лица или группа лиц и т.д.), которую нужно проанализировать. Когда экономические факторы сводятся к числам в денежном измерении, количество объектов, их вес в тоннах и время, необходимое для их производства, вычислены и произведены оценки вероятностей, зачастую оказывается, что эффективность процесса моделирования сложных человеческих проблем достигла своего предела. Человеческие возможности в этом процессе сильно зависят от тех факторов, которые мы можем измерять. Метод анализа иерархий является систематической процедурой для иерархического представления элементов, определяющих суть проблемы. Метод состоит в декомпозиции проблемы на все более простые составляющие части и дальнейшей обработке последовательности суждений лица, принимающего решения, по парным сравнениям. В результате может быть выражена относительная степень (интенсивность) взаимодействия элементов в иерархии. Эти суждения затем выражаются численно. МАИ включает в себя процедуры синтеза множественных суждений, получения приоритетности критериев и нахождения альтернативных решений. Такой подход к решению проблемы выбора исходит из естественной способности людей думать логически и творчески, определять события и устанавливать отношения между ними. Этапы МАИ Первым этапом применения МАИ является структурирование проблемы выбора в виде иерархии или сети. В наиболее элементарном виде иерархия строится с вершины (цели), через промежуточные уровни-критерии (технико-экономические параметры) к самому нижнему уровню, который в общем случае является набором альтернатив. После иерархического воспроизведения проблемы устанавливаются приоритеты критериев и оценивается каждая из альтернатив по критериям. В МАИ элементы задачи сравниваются попарно по отношению к их воздействию на общую для них характеристику. Система парных сведений приводит к результату, который может быть представлен в виде обратно симметричной матрицы. Элементом матрицы a(i,j) является интенсивность проявления элемента иерархии i относительно элемента иерархии j, оцениваемая по шкале интенсивности от 1 до 9, где 1 – равная важность объектов, а 9 – очень сильное превосходство одного над другим. Если при сравнении одного фактора i с другим j получено a(i,j) = b, то при сравнении второго фактора с первым получаем a(j,i) = 1/b. Относительная сила, величина или вероятность каждого отдельного объекта в иерархии определяется оценкой соответствующего ему элемента собственного вектора матрицы приоритетов, нормализованного к единице. Процедура определения собственных векторов матриц поддается приближению с помощью вычисления геометрической средней. Пусть:A1...An - множество из n элементов;W1...Wn - соотносятся следующим образом:
Оценка компонент вектора приоритетов производится по схеме:
Приоритеты синтезируются, начиная со второго уровня вниз. Локальные приоритеты перемножаются на приоритет соответствующего критерия на вышестоящем уровне и суммируются по каждому элементу в соответствии с критериями, на которые воздействует элемент. Весьма полезным побочным продуктом теории является так называемый индекс согласованности (ИС), который дает информацию о степени нарушения согласованности. Вместе с матрицей парных сравнений мы имеем меру оценки степени отклонения от согласованности. Если такие отклонения превышают установленные пределы, то тому, кто проводит суждения, следует перепроверить их в матрице. ИС = (n max - n)/(n - 1) Теперь сравним эту величину с той, которая получилась бы при случайном выборе количественных суждений из нашей шкалы, и образовании обратно симметричной матрицы. Ниже даны средние согласованности для случайных матриц разного порядка.
Если разделить ИС на число, соответствующее случайной согласованности матрицы того же порядка, получим отношение согласованности (ОС). Величина ОС должна быть порядка 10% или менее, чтобы быть приемлемой. В некоторых случаях допускается ОС до 20%, но не более, иначе надо проверить свои суждения. |