Главная страница
Навигация по странице:

  • Моногибридное скрещивание. Первый и второй законы Г.Менделя (формулировка законов, цитогенетический анализ, условия выполнения законов). Менделирующие признаки человека.

  • Моногибридное скрещивание

  • Певый закон Менднеля.

  • Менделирующие признаки

  • Типы наследования менделирующих признаков

  • Особенности наследования признаков, контролируемых аллельными и неаллельными генами.

  • Экспрессивность

  • При этом степень подавления рецессивного признака обусловливает различные варианты доминирования

  • Доминирование, связанное с полом.

  • Полное и неполное сцепление генов. Анализ дигибридного скрещивания в условиях полного и неполного сцепления генов. Генетический эффект кроссинговера.

  • обмена гомологичными участками хромосом

  • Во время

  • Генетический полиморфизм – основа индивидуальных реакций на воздействия факторов среды. Понятие о множественных аллелях.

  • Биологическое значение

  • Аутосомно-доминантное и аутосомно-рецессивное наследование признаков (характерные особенности, примеры).

  • Для этого типа наследования характерны следующие закономерности

  • экзамен биология. Сущность жизни. Основные уровни организации и свойства живого. Жизнь


    Скачать 0.92 Mb.
    НазваниеСущность жизни. Основные уровни организации и свойства живого. Жизнь
    Дата14.06.2021
    Размер0.92 Mb.
    Формат файлаdocx
    Имя файлаэкзамен биология.docx
    ТипДокументы
    #217272
    страница3 из 7
    1   2   3   4   5   6   7




    Современная репродуктивная стратегия человека включает в себя:

    1. Искусственное оплодотворение;

    2. Оплодотворение яйцеклетки в пробирке;

    3. Трансплантация эмбрионов с использованием «суррогатного материнства»;

    4. Донорство яйцеклеток и эмбрионов.


    Моногибридное скрещивание. Первый и второй законы Г.Менделя (формулировка законов, цитогенетический анализ, условия выполнения законов). Менделирующие признаки человека.

    Моногибридное скрещивание — скрещивание форм, отличающихся друг от друга по одной паре альтернативных признаков. При этом скрещиваемые предки являются гетерозиготными по положению аллеля в хромосоме.
    Моногибридное наследование представляет собой пример наследования единственного признака (гена), различные формы которого называют аллелями. Например, при моногибридном скрещивании между двумя чистыми линиями растений, гомозиготных по соответствующим признакам — одного с жёлтыми семенами (доминантный признак), а другого с зелёными семенами (рецессивный признак), можно ожидать, что первое поколение будет только с жёлтыми семенами, потому что аллель жёлтых семян доминирует над аллелью зелёных. При моногибридном скрещивании сравнивают только один характерный признак.

    Певый закон Менднеля.

    Закон единообразия гибридов первого поколения — при скрещивании двух гомозиготных организмов, относящихся к разным чистым линиям и отличающихся друг от друга по одной паре альтернативных проявлений признака, всё первое поколение гибридов (F1) окажется единообразным и будет нести проявление признака одного из родителей

    Этот закон также известен как «закон доминирования признаков». Его формулировка основывается на понятии чистой линии относительно исследуемого признака — на современном языке это означает гомозиготность особей по этому признаку.

    При скрещивании чистых линий гороха с пурпурными цветками и гороха с белыми цветками Мендель заметил, что взошедшие потомки растений были все с пурпурными цветками, среди них не было ни одного белого. Мендель не раз повторял опыт, использовал другие признаки. Если он скрещивал горох с жёлтыми и зелёными семенами, у всех потомков семена были жёлтыми. Если он скрещивал горох с гладкими и морщинистыми семенами, у потомства были гладкие семена. Потомство от высоких и низких растений было высоким.

    Гибриды первого поколения всегда единообразны по данному признаку и приобретают признак одного из родителей. Этот признак - более сильный, доминантный (термин введён Менделем от латинского dominus), всегда подавлял другой, рецессивный.

    Второй закон Менделя

    Закон расщепления — при скрещивании двух гетерозиготных потомков первого поколения между собой во втором поколении наблюдается расщепление в определенном числовом отношении: по фенотипу 3:1, по генотипу 1:2:1.

    Скрещиванием организмов двух чистых линий, различающихся по проявлениям одного изучаемого признака, за которые отвечают аллели одного гена, называется моногибридное скрещивание.

    Расщепление — это распределение доминантных и рецессивных признаков среди потомства в определённом числовом соотношении. Рецессивный признак у гибридов первого поколения не исчезает, а только подавляется и проявляется во втором гибридном поколении.

    Менделирующие признаки

    Менделирующие признаки – признаки, наследование которых про исходит по закономерностям, установленным Г. Менделем.

    Менделирующие признаки определяются одним геном моногенно, то есть когда проявление признака определяется взаимодействием аллельных генов, один из которых доминирует (подавляет) другой. Менделевские законы справедливы для аутосомных генов с полной пенетрантностью и постоянной экспрессивностью (степенью выраженности признака).
    Если гены локализованы в половых хромосомах (за исключением гомологичного участка в Х- и У-хромосомах), или в одной хромосоме сцеплено, или в ДНК органоидов, то результаты скрещивания не будут следовать законам Менделя.
    Общие законы наследственности одинаковы для всех эукариот. У человека также имеются менделирующие признаки, и для него характерны все типы их наследования.

    Типы наследования менделирующих признаков:
    I .Аутосомно-доминантный тип наследования. По аутосомно-доминантному типу наследуются некоторые нормальные и патологические признаки:
    1)белый локон над лбом;
    2) волосы жесткие, прямые (ежик);
    3) шерстистые волосы - короткие, легко секущиеся, курчавые, пышные;
    4) кожа толстая;
    5) способность свертывать язык в трубочку;
    6) габсбургская губа - нижняя челюсть узкая, выступающая вперед, нижняя губа отвислая и полуоткрытый рот;
    7) полидактилия (от греч.polus – многочисленный, daktylos- палец) – многопалость, когда имеется от шести и более пальцев;
    8) синдактилия (от греч. syn - вместе)-сращение мягких или костных тканей фаланг двух или более пальцев;
    9) брахидактилия (короткопалость) – недоразвитие дистальных фаланг пальцев;
    10) арахнодактилия (от греч. агаhna – паук ) – сильно удлиненные «паучьи» пальцы

    II. Аутосомно-рецессивный тип наследования.
    Если рецессивные гены локализованы в аутосомах, то проявиться они могут при браке двух гетерозигот или гомозигот по рецессивному аллелю.
    По аутосомно-рецессивному типу наследуются следующие признаки:
    1)волосы мягкие, прямые;
    2)кожа тонкая;
    3)группа крови Rh-;
    4)неощущение горечи вкуса фенилкарбамида;
    5)неумение складывать язык в трубочку;
    6)фенилкетонурия – блокируется превращение фенилаланина в тирозин, который превращается в фенилпировиноградную кислоту, являющуюся нейротропным ядом (признаки – судорожные синдромы, отставание в психическом развитии, импульсивность, возбудимость, агрессия);
    7)галактоземия - накопление в крови галактозы, которая тормозит всасывание глюкозы и оказывает токсическое действие на функцию печени, мозга, хрусталика глаза;
    8)альбинизм.
    Частота рецессивных наследственных болезней особенно повышается в изолятах и среди населения с высоким процентом кровнородственных браков.
    Особенности наследования признаков, контролируемых аллельными и неаллельными генами.

    Неалле́льные ге́ны — это гены, расположенные в различных участках хромосом и кодирующие неодинаковые белки. Неаллельные гены также могут взаимодействовать между со­бой.

    При этом либо один ген обусловливает развитие нескольких признаков, либо, наоборот, один признак проявляется под действием совокупности нескольких генов.

    Виды взаимодействия:

    • Комплементарность. Этот вид взаимодействия генов заключается в том, что при наличии двух доминантных аллелей разных генов появляется новый признак, то есть для появления нового признака у организма должен быть генотип АВ. Так, для развития окраски необходимо, чтобы в организме синтезировались определенные белки и ферменты, превращающие их в пигмент. Классическим примером является наследование окраски цветков у душистого горошка.

    • Эпистаз. При эпистатическом взаимодействии одна пара генов может подавлять действие другой пары генов. Например, у лошадей масть определяется двумя парами генов. В одной паре генов доминантный аллель А определяет серую окраску (раннее поседение). Этот доминантный ген подавляет действие не только аллельного ему рецессивного гена а, но и подавляет проявление другой пары генов, определяющих масть (вороную, рыжую, гнедую), вне зависимости от того, является эта пара рецессивной или доминантной гомозиготой или гетерозиготой - окраска лошади будет только серой (лошади с генотипами ААвв, Аавв, ААВВ, АаВВ или АаВв).

    • Полимерия. Многие признаки определяются несколькими парами генов. Это характерно, в основном, для количественных признаков, таких как яйценоскость у кур, жирность молока у коров.

    • Плейотропия. При плейотропном действии гена один ген определяет развитие или влияет на проявление нескольких признаков. Ген определяет несколько признаков и признак определяется несколькими генами, поэтому можно сделать вывод, что плейотропное действие гена неразрывно связано с полимерным взаимодействием генов.

    • Летальные гены. Летальность генов - одна из разновидностей плейотропного действия гена. Так один ген, определяющий какой-либо признак, влияет так же на жизнеспособность в целом. Ярким примером летальности гена служит ген платиновости у лисиц.


    Аллельные гены - гены, расположенные в одинаковых участках хромосом.

    У некоторых гетерозиготных организмов при полном доминировании наблюдается различная степень выраженности доминантного признака. В этом случае говорят о различной экспрессивности и пенетрантности генов.

    Экспрессивность – степень проявления доминантного признака у гетерозигот.

    Доминирование (доминантность) заключается в том, что один из аллелей пары (доминантный) маскирует или полностью подавляет проявление второго аллеля (рецессивного).

    При этом степень подавления рецессивного признака обусловливает различные варианты доминирования:

    • Полное доминирование — взаимодействие двух аллелей одного гена, когда доминантный аллель полностью исключает проявление действия второго аллеля. В фенотипе присутствует только признак, задаваемый доминантной аллелью. Например, в экспериментах Менделя пурпурная окраска цветка полностью доминировала над белой

    • Неполное доминирование — доминантный аллель в гетерозиготном состоянии не полностью подавляет действие рецессивного аллеля. Гетерозиготы имеют промежуточный характер признака. Например, если в гомозиготном состоянии один аллель определяет красную окраску цветка, а другой — белую, то гетерозиготный гибрид будет иметь розовые цветки В некоторых источниках неполное доминирование характеризуют как такой тип взаимодействия аллелей, когда признак у гибридов F1 занимает не среднее положение, а отклоняется в сторону родителя с доминирующим признаком. Полностью же средний вариант (как, например, приведённый выше пример наследования окраски цветков) относят к промежуточному характеру наследования, то есть отсутствию доминирования

    • Сверхдоминирование — более сильное проявление признака у гетерозиготной особи, чем у любой гомозиготной. На этом типе аллельного взаимодействия основано явление гетерозиса (превосходство над родителями по жизнеспособности, энергии роста, плодовитости, продуктивности)

    • Кодоминирование — проявление у гибридов нового варианта признака, обусловленного взаимодействием двух разных аллелей одного гена. При этом, в отличие от неполного доминирования, оба аллеля проявляются в полной мере. Наиболее известным примером является наследование групп крови у человека Некоторые источники также понимают именно под кодоминированием отсутствие доминантно-рецессивных отношений

    • Доминирование, связанное с полом. Происходит тогда, когда одна и та же аллель у самцов проявляется как доминантная, а у самок — как рецессивная. Например, у овцематок доминирует комолость (R), а у баранов — рогатость (R1)

    • Аллельное исключение - вид взаимодействия аллельных генов в генотипе организма, при котором происходит инактивация одного из аллелей в составе хромосомы. Таким образом, даже процесс формирования элементарного признака зависит от взаимодействия, по меньшей мере, двух аллельных генов, и конечный результат определяется конкретным сочетанием их в генотипе.


    Полное и неполное сцепление генов. Анализ дигибридного скрещивания в условиях полного и неполного сцепления генов. Генетический эффект кроссинговера.

    Генов, локализованные в одной хромосоме, наследуются совместно, сцепленно, образуя группы сцепления. Число групп сцепления соответствует числу пар хромосом. Явление сцепленного наследования генов, локализованных в одной хромосоме, получило название закона Моргана.


    Так, при дигибридном скрещивании дрозофилы, имеющей признаки “серое тело”, “нормальные крыльям (ААВВ), с дрозофилой “черное тело”, “короткие крылья” (аавв) все гибриды первого поколения были с серым телом и длинными крыльями.

    Следовательно, эти два признака (“серое тело” и “длинные крылья”) доминантны, а признаки “черное тело” и “короткие крылья” — рецессивны.

    В этом примере единообразие полученных гибридов первого поколения подчиняется первому закону Менделя. Однако при скрещивании полученных гибридов независимого расщепления в F2 в отношении 9:3:3:1 не наблюдается, оно" составляет 3:1. Это можно объяснить тем, что гены, контролирующие цвет тела и форму крыльев, находятся в одной хромосоме и наследуются вместе, сцепленно. Но иногда среди потомства в F2 появляются мушки с серым телом, короткими крыльями и черным телом, длинными крыльями, т. е. с перекомбинированными признаками. Это свидетельствует о том, что сцепление генов, контролирующих проявление этих признаков и расположенных в одной хромосоме, неполное и в некоторых случаях нарушается.

    Нарушение сцепленности возникает в результате обмена гомологичными участками хромосом во время мейоза, поэтому и развиваются мушки с перекомбинированными признаками. Оно может происходить в любом участке хромосомы. Но чем эти участки дальше друг от друга, тем больше вероятность обмена между ними, а значит, и больше шансов для перекомбинации признаков. Гены перемешиваются благодаря слиянию гамет двух различных особей, однако генетические изменения осуществляются не только этим путем. Никакие два потомка одних и тех же родителей (если только это не идентичные близнецы) не будут абсолютно одинаковыми.
    Во времямейозаосуществляются два различных вида пересортировки генов:

    • Один вид пересортировки - это результат случайного распределения разных материнских и отцовских гомологов между дочерними клетками при первом делении мейоза, каждая гамета получает свою, отличную от других выборку материнских и отцовских хромосом. Из этого следует, что клетки любой особи могут в принципе образовать 2 в степени n генетически различающихся гамет, где n - гаплоидное число хромосом.

    • При кроссинговере происходит разрыв двойной спирали ДНК в одной материнской и одной отцовской хроматиде, а затем получившиеся отрезки воссоединяются "наперекрест" (процесс генетической рекомбинации). Рекомбинация происходит в профазе первого деления мейоза, когда две сестринские хроматиды так тесно сближены друг с другом, что их невозможно увидеть в отдельности. Гораздо позже в этой растянутой профазе становятся ясно различимы две отдельные хроматиды каждой хромосомы. В это время видно, что они связаны своими центромерами и тесно сближены по всей длине. Два гомолога остаются связанными в тех точках, где произошел кроссинговер между отцовской и материнской хроматидами. В каждой такой точке, которую называют хиазмой , две из четырех хроматид перекрещиваются  Таким образом, это морфологический результат произошедшего кроссинговера, который сам по себе недоступен для наблюдения.


    Генетический полиморфизм – основа индивидуальных реакций на воздействия факторов среды. Понятие о множественных аллелях.

    Генетический полиморфизм – многообразие генотипов особей одного вида. 

    Чаще всего он обусловливается либо варьирующими давлениями и направленностью отбора в различных условиях (например, в разные сезоны), либо повышенной относительной жизнеспособностью гетерозигот .

    Один из видов генетического полиморфизма — сбалансированный. Генетический полиморфизм — характеризуется постоянным оптимальным соотношением полиморфных форм, отклонение от которого оказывается неблагоприятным для вида, и автоматически регулируется (устанавливается оптимальное соотношение форм). В состоянии сбалансированного генетического полиморфизма у человека и животных находится большинство генов. Различают несколько форм генетического полиморфизма, анализ которых позволяет определять действие отбора в природных популяциях.

    Биологическое значение:
    Генетическая изменчивость в популяции предоставляет исходный материал для действия естественного отбора и генетического дрейфа. То есть - является необходимым элементом для микроэволюционных процессов.

    Генетическое разнообразие или генетический полиморфизм можно описать как разнообразие, популяций, по признакам или маркерам имеющим генетическую природу. Один из видов биоразнообразия. Генетическое разнообразие представляет собой важный компонент генетической характеристики популяции, группы популяций, или вида. Генетическое разнообразие, в зависимости от выбора рассматриваемых генетических маркеров, характеризуется несколькими измеряемыми параметрами.

    • Средняя гетерозиготность.

    • Число аллелей на локус.


    • Генетическое расстояние (для оценки межпопуляционного генетического разнообразия)


    Установление локализации гена наследственной болезни, как, впрочем, и любого другого гена, возможно в том случае, когда мы можем установить или предположить фазу сцепления для исследуемого гена и полиморфного маркерного локуса.

    Это можно сделать только тогда, когда носитель гена наследственной болезни будет гетерозиготен по аллелям маркерного локуса. Из этого следует, что для анализа сцепления пригодны только те маркерные локусы, которые имеют выраженный полиморфизм.

    Множественный аллелизм — это существование в популяции более двух аллелей данного гена.

    Множественный аллелизм для генов, контролирующих системы несовместимости, выступает как фактор отбора, препятствующий образованию зигот и организмов определенных зигот.

    Примером множественного аллелизма является серия множественных аллелей s1, s2, s3, обеспечивающих самостерильность многих растений. Двенадцать различных состояний одного локуса у дрозофилы, обусловливающих разнообразие окраски глаз (w — белые, we — эозиновые, wa — абрикосовые, wch — вишневые, wm — пятнистые и т. д.); серия множественных аллелей окраски шерсти у кроликов («сплошная», гималайская, альбинос и т. д.); аллели IA, Iв, I°, определяющие группы крови у человека, и т. д.

    Серия множественных аллелей — результат мутирования одного гена.

    Обусловленность признака серий множественных аллелей не меняет соотношения фенотипов в гибридном потомстве. Во всех случаях в генотипе присутствует только одна пара аллелей, их взаимодействие и определяет развитие признака.

    Аутосомно-доминантное и аутосомно-рецессивное наследование признаков (характерные особенности, примеры).

    Аутосомно-доминантное наследование признаков.

    При изучении родословных, составленных для некоторых заболеваний, можно установить, что болезнь передаётся от одного из родителей к детям на протяжении нескольких поколений.

    Для этого типа наследования характерны следующие закономерности:

    • У каждого поражённого болен один из родителей.

    • У поражённого, состоящего в браке со здоровым супругом, половина детей больна, половина здорова.

    • У здоровых детей поражённого родителя собственные дети и внуки здоровы.

    • Мужчины и женщины поражаются достаточно часто.

    • Заболевание должно проявиться в каждом поколении.

    • Гетерозиготные особи поражены.

    Примеры:



    • 1   2   3   4   5   6   7


    написать администратору сайта