Мед. Генетика Горбунова. Учебник для студентов медицинских вузов и слушателей последипломного образования
Скачать 1.71 Mb.
|
Глава 2.10. Генетический контроль предрасположенности к мультифакториальной патологии Большинство широко распространенных болезней человека относятся к классу мультифакториальных заболеваний. В их этиологию наряду с неблагоприятными факторами окружающей среды существенный вклад вносят генетические составляющие. При болезнях с наследственной предрасположенностью повторные случаи заболевания чаще наблюдаются среди родственников, чем в общей популяции. О вкладе наследственных компонентов в этиологию заболевания судят по его конкордантности среди моно- и дизиготных близнецов, а также по коэффициенту наследуемости (H), определяющему степень превышения конкордантности у монозиготных близнецов по сравнению с дизиготными (см. гл. 2.2, близнецовый метод). Высокие коэффициенты наследуемости, превышающие 70%, характерны, например, для различных форм умственной отсталости (идиотии, имбецильности дебильности), маниакально-депрессивного психоза, рахита, что свидетельствует о ведущей роли наследственных факторов в их этиологии. Несколько ниже (в районе 50-70%) коэффициенты наследуемости шизофрении, эпилепсии, сахарного диабета, врожденного пилоростеноза, spina bifida, атопии, псориаза и др. Это свидетельствует о том, что наряду с наследственными компонентами влияние на развитие этих заболеваний оказывают неблагоприятные факторы окружающей среды. Значение средовых факторов еще более возрастает для таких заболеваний, как язвенная болезнь, врожденный вывих бедра, расщелина губы и/или неба и др. Средовые факторы становятся ведущими в этиологии многих других мультифакториальных заболеваний (гипертоническая болезнь, инфаркт миокарда, бронхиальная астмы и др.). Но и в этом последнем случае нельзя полностью исключать влияния наследственных факторов на развитие заболеваний. Кроме того, необходимо помнить, что с этиологической точки зрения каждая из перечисленных выше нозологических форм представляет собой гетерогенную группу заболеваний, причины возникновения и развития которых могут существенно различаться. Достаточно сказать, что для многих из этих заболеваний описаны редкие моногенные варианты. В формировании наследственной предрасположенности участвует не один, а множество генов, получивших название генов-кандидатов или генов предрасположенности. Число генов-кандидатов может достигать нескольких десятков, а иногда и сотен. Следует подчеркнуть, что даже при значительном суммарном генетическом эффекте влияние каждого отдельного гена на риск развития заболевания может быть относительно небольшим. Комплекс генов, участвующих в формировании наследственной предрасположенности к заболеванию, образует «генную сеть». Каждое мультифакториальное заболевание характеризуется своей специфической «генной сетью». В настоящее время ни для одного мультифакториального заболевания не удалось выявить все гены, участвующие в формировании наследственной предрасположенности. Однако составление «генной сети», идентификация в ней центральных генов и генов-модификаторов, исследование межгенных и ген-средовых взаимодействий, разработка на этой основе комплекса профилактических и лечебных мероприятий индивидуально для каждого пациента составляют стратегическую основу нового, быстро развивающегося направления, получившего название предиктивная (предсказательная) медицина. Мы уже отмечали ранее, что каждый человек имеет строго индивидуальную наследственную конституцию, которая определяется наличием мутаций и разнообразием полиморфных аллелей генов. Развитие мультифакториального заболевания есть результат взаимодействия наследственной конституции и внешней среды. Важно подчеркнуть, что наследственная конституция остается неизменной в процессе жизни человека. Мутации, возникающие в половых клетках, могут привести к изменениям наследственной конституции только в будущих поколениях. Соматические мутации, хотя и могут привести к определенным болезням, о которых мы будем говорить в следующей главе, но они всегда затрагивают не все, а лишь относительно небольшую часть клеток организма. Применительно к мультифакториальным заболеваниям в настоящее время наибольшее практическое значение имеет анализ полиморфных аллелей или полиморфизмов. Однако, отметим сразу, что накапливается все больше фактов, свидетельствующих о том, что не меньшая, а может быть даже ведущая роль в формировании наследственной предрасположенности, принадлежит эпигенетической изменчивости. Полиморфизмы в большинстве своем представляют собой варианты нормы, так как не оказывают или оказывают относительно небольшой эффект на функцию кодируемых белков. Полиморфные аллели найдены практически во всех генах. Как правило, среди населения они представлены достаточно широко, хотя их частоты могут значительно варьировать в различных популяциях. Наибольшую ценность представляют функционально значимые полиморфные аллели, оказывающие влияние на активность кодируемых белков. Часто они располагаются в регуляторных областях генов. При определѐнном стечении обстоятельств нейтральность полиморфного аллеля становится условной. Удачным является пример полиморфизма цвета кожи. Как известно, еѐ оттенок детерминируется несколькими генами, и существенно различается у представителей разных рас и этнических групп. Представители белой расы, оказавшиеся в условиях повышенной солнечной инсоляции, подвергаются многократному увеличению риска новообразований наружных покровов. Данное заболевание носит характер эпидемии среди белых иммигрантов в Австралии и ЮАР. Таким образом, низкое содержание в коже защитного пигмента меланина можно считать адаптивным признаком для территорий с малой инсоляцией (увеличивается поглощение солнечного излучения), но вредным – для стран с жарким климатом. Из этого примера следует другая важная характеристика полиморфных аллелей. Если мутантные версии генов проявляют свои патологические свойства в соответствии с законами Менделя, следуя принципам доминантного или рецессивного наследования, то полиморфные варианты влияют на фенотип только при сочетании с другими генетическими и негенетическими факторами, то есть обладают очень низкой пенетрантностью. Поиск генов-кандидатов, формирующих «генную сеть» мультифакториального заболевания, осуществляют, исходя из знаний об его этиологии и патогенезе. Что мы знаем о заболевании? Какие метаболические циклы дефектны при тех или иных заболеваниях? Какие белки оперируют в этих патологических метаболических циклах и как устроены гены, кодирующие эти белки? Есть ли там широко распространенные среди населения (полиморфные) аллели, влияющие на функцию гена, прежде всего, снижающие или повышающие его активность, и не являются ли они генетическими факторами риска, предрасполагающим к развитию заболевания? Для ответа на этот последний вопрос проводят оценку частот полиморфных аллелей тестируемых генов-кандидатов в выборках больных и контроле. И только в тех случаях, когда уровни полиморфизма среди больных оказываются достоверно выше по сравнению с контролем, эти аллели рассматривают в качестве генетических или немодифицируемых факторов риска развитияконкретноймультифакториальной патологии. Итак, чаще всего, специфическими генетическими факторами риска оказываются полиморфные аллели генов, продукты которых оперируют в патологических метаболических циклах. Особое значение для формирования наследственной предрасположенности к широко распространенным болезням имеют полиморфные аллели в генах, участвующих в контроле защитных функций организма, таких как иммунитет, детоксикация, гистосовместимость, стабилизация генетического аппарата клетки. Функционально значимые полиморфные аллели в этих генах относятся к классу неспецифических генетических факторов риска, так как они могут предрасполагать к широкому спектру заболеваний. Итак, генетические факторы риска в сочетании с неблагоприятными внешними воздействиями (так называемыми, модифицируемыми факторами риска) могут быть причиной развития любых мультифакториальных заболеваний, включая болезни нервной, эндокринной, иммунной систем, бронхолегочную патологию, онкологические, сердечно-сосудистые заболевания, а также многие другое. Тестирование состояния генов предрасположенности позволяет, прежде всего, формировать группы лиц с высоким риском развития определенной мультифакториальной патологии. Причем, выявление генетической предрасположенности к какому-либо заболеванию может быть проведено задолго до появления клинических симптомов, что позволяет эффективно предупреждать его развитие или отодвигать сроки манифестации, то есть проводить лечебно-профилактические мероприятия, направленные на снижение степени данного риска под контролем врача. Кроме того, молекулярно-генетические исследования позволяют выявлять индивидуальные особенности этиопатогенеза наиболее частых заболеваний у различных пациентов. С другой стороны, в настоящее время нужно подходить с большой осторожностью к клинической интерпретации генетических факторов риска, являющихся лишь предпосылкой к возникновению заболевания. При этом необходимо использовать комплексный подход, включающий наряду с анализом распределения полиморфных аллелей среди различных групп больных, предварительные популяционные исследования, а также изучение взаимодействия генетических и средовых факторов риска. Необходимо также учитывать другие факторы, составляющие комбинированный риск развития болезни, и особенно те, которые выявляются при клинико-инструментальном обследовании больного. 2.10.1. Генетические факторы риска сердечно-сосудистой патологии В качестве примера остановимся более подробно на специфических генетических факторах риска сердечно-сосудистой патологии. Выявление таких факторов и оценка их вклада в развитие сердечно-сосудистых заболеваний являются основными задачами современной молекулярной кардиологии. Полиморфизмы в нескольких сотнях генов исследованы в качестве генетических факторов риска атеросклероза, гипертензии, ишемической болезни сердца, инфаркта миокарда, инсульта, тромботических и других заболеваний. Для многих подобных исследований, проведенных в разных популяциях, на клинически неоднородных выборках больных, характерна противоречивость полученных результатов. Прямые ассоциации найдены с относительно небольшим количеством генов-кандидатов. Чаще всего связи генетических факторов риска с предрасположенностью к заболеванию обнаруживаются в группах больных, подвергающихся каким-то дополнительным неблагоприятным внешним воздействиям, таким, например, как курение или другие вредные привычки, неправильный образ жизни, гиподинамия, несбалансированное питание, плохая экологическая обстановка и т.п. Во многих случаях показан аддитивный характер действия различных генетических и средовых факторов риска. Обзор этих исследований далеко выходит за рамки настоящего руководства. Мы лишь перечислим группы генов, наиболее часто подвергающихся анализу в связи с выяснением наследственной предрасположенности к сердечно-сосудистой патологии. Поскольку нарушения липидного метаболизма часто сопутствуют развитию сердечно-сосудистой патологии, одними из первых были исследованы функциональные полиморфизмы генов, участвующих в контроле обмена липидов. Это гены аполипопротеинов A (LPA), B (APOB), C (APOC1-3), E (APOE), рецептора липопротеина низкой плотности (LPLR), параоксоназы (PON1) и др. Не вызывает сомнения участие нарушений ренин- ангиотензин-альдестероновой системы в патогенезе артериальной гипертензии и других сердечно-сосудистых заболеваний. В связи с этим были исследованы полиморфизмы в генах ренина (REN), ангиотензиногена (AGT), ангиотензин-превращающего фермента (ACE), рецепторов ангиотензина (AGTR) и др. Нарушения в системе свертывания крови и фибринолиза могут явиться причиной развития ранних инфарктов, инсультов, тромботических заболеваний. Поэтому анализу подверглись полиморфизмы генов факторов свертывания крови II (F2), V (F5), VII (F7), ингибитора активатора плазминогена (PAI1) и др. Огромное значение в патогенезе сердечно-сосудистых заболеваний придается состоянию сосудистой стенки и эндотелиальной дисфункции. Это явилось основанием для изучения полиморфизмов генов эндотелина (EDN1) и его рецептора (EDNRA), метилентетрагидрофолатредуктазы (MTHFR), синтетазы окиси азота (NOS) и др. Список исследованных генов-кандидатов может быть значительно расширен. Полученная в результате этих исследований информация о наличии генетических дефектов, приводящих к дислипидемиям, дисфункции эндотелия, увеличению риска рестенозов коронарных сосудов после кардиоинвазивных вмешательств уже сейчас дает возможность выбрать адекватную тактику ведения больного и проводить патогенетически обоснованное лечение с применением препаратов, модулирующих выявленные метаболические нарушения. 2.10.2. Другие примеры использования генетических факторов риска Определение наследственной предрасположенности к различным видам физической деятельности человека имеет огромное значение для выбора профессии. Это особенно важно в спорте. Возникло целое новое направление – молекулярная генетика спорта, практические результаты которого имеют первостепенное значение не только для отбора перспективных спортсменов и их специализации, но и для идентификации тех спортсменов, для которых повышенные физические нагрузки противопоказаны, так как могут привести к нежелательным последствиям для здоровья. Проиллюстрируем последнее положение лишь на одном небольшом примере. Показано, что полиморфный аллель в гене ангиотензин- превращающего фермента (ACE), который в гомозиготном состоянии встречается у трети населения, ассоциирован с небольшой гипертрофией сердечной мышцы. Носители этого аллеля способны выдерживать повышенные физические нагрузки, и в некоторых случаях это определяет выбор их профессии. В частности, более высокая частота этого аллеля обнаруживается среди профессиональных спортсменов. Но гипертрофия сердечной мышцы в сочетании с высокими физическими нагрузками может привести к синдрому внезапной смерти, который среди профессиональных спортсменов встречается достоверно чаще, чем в общей популяции. Поэтому необходимо не только выявлять тех спортсменов, которые являются носителями полиморфного аллеля в гене ACE, но и с гораздо большей осторожностью подходить к разработке индивидуальных программ их физической подготовки. Рассмотрим ещѐ один характерный пример. Известно, что один из рецепторов допамина, Drd2, представлен в человеческой популяции как минимум двумя генетически детерминированными изоформами, причѐм продукт одного из аллелей обладает пониженной активностью. У лиц, унаследовавших этот аллель, слегка снижена возбудимость допаминэргической системы. В результате может несколько обедняться функционирование «центра вознаграждения», находящегося в головном мозге. У таких людей, по-видимому, повышен риск зависимости от стимуляторов допаминэргической системы: алкоголя, никотина, наркотиков. При нормальном поведении этот риск реализуется редко. Однако сочетание генетического и негенетического факторов, то есть присутствие неблагоприятного аллеля в гене DRD2 и злоупотребление алкоголем или наркотиками, может привести к быстрому формированию зависимости от этих веществ. Таким образом, полиморфные аллели, в отличие от мутантных, не детерминируют фатальной предрасположенности к патологии, но обладают способностью потенцировать действие других вредных влияний. С другой стороны, неблагоприятные воздействия внешней среды могут привести к развитию заболевания и без участия генотипа, то есть при отсутствии каких- либо особенностей генетической конституции. К настоящему моменту выявлены десятки полиморфных генов, влияющих на возникновение и клиническое течение различных патологий (табл. 4). Аутоиммунные заболевания ассоциируются с вариантами генотипа HLA - некоторые наборы «лейкоцитарных» антигенов могут провоцировать развитие аномальных иммунных реакций. Предрасположенность к раку, во многом, связана с индивидуальными способностями организма активировать и инактивировать канцерогены. Склонность к тромбозам наблюдается чаще у людей с «неблагоприятными» аллелями белков-участников гемостатического каскада. Риск атеросклероза и его осложнений может модифицироваться полиморфизмом генов аполипротеинов. Разнообразием генов метаболизма объясняется также феномен индивидуальной непереносимости некоторых лекарственных препаратов. Очень важно подчеркнуть, что сведения о медицинских аспектах генного полиморфизма только начинают приобретать форму, пригодную для практического применения диагностических тестов, причем новые знания о генах предрасположенности появляются с ошеломляющей быстротой. В заключение, следует напомнить, что присутствие «неблагоприятного» полиморфного аллеля является вероятностным показателем, значение которого нельзя переоценивать - знания о генотипе в данном случае не имеют самостоятельной роли, а являются компонентом комплексного исследования пациента. 2.10.3. Роль генов детоксикации в формировании наследственной предрасположенности к мультифакториальной патологии Рассмотрим роль неспецифических генетических факторов риска в формировании наследственной предрасположенности на примере полиморфизмов некоторых генов «внешней среды» , продукты которых обеспечивают детоксикацию ксенобиотиков . К ксенобиотикам относятся многие чужеродные для организма вещества, такие как промышленные и сельскохозяйственные яды, некоторые пищевые добавки и лекарственные препараты, алкоголь, никотин, наркотические вещества, а также другие природные и химические соединения. Выделяют 3 фазы биотрансформации ксенобиотиков. На I фазе происходит их идентификация и активация с участием членов многочисленного семейства цитохромов P-450 и ферментов нецитохромного окисления – микросомальных эпоксидгиролаз, эстераз, моноаминооксидаз, алкогольдегидрогеназы и др. На этой стадии может происходить образование опасных для клетки активных промежуточных метаболитов. На II фазе происходит нейтрализация этих активных метаболитов с участием глютатионтрансфераз, ацетилтрансфераз и других ферментов, превращающих их в водорастворимые нетоксические соединения, подлежащие выведению из организма. Само выведение через легкие, почки, кишечник осуществляется на III фазе и обеспечивается белками «множественной лекарственной устойчивости». Эффективность детоксикации определяется координированным взаимодействием ферментов I и II фазы, и особенно неблагоприятно сочетание высокой активности ферментов I фазы и низкой активности ферментов II фазы. Более 50 различных заболеваний ассоциировано с небольшими отклонениями в работе системы детоксикации, обусловленными присутствием функционально значимых полиморфных аллелей в генах соответствующих ферментов. В первую очередь, это относится к онкологическим заболеваниям. В частности, рак легких достоверно чаще возникает у носителей полиморфных аллелей каждого из генов CYP1A1, GSTM1 и NAT2, кодирующих соответственно один из цитохромов P-450, глютатион-S-трансферазу μ1 и N-ацетилтрансферазу 2. Эта ассоциация становится особенно заметной у курильщиков. Продукт гена CYP1A1 участвует в метаболизме многих углеводородов, в том числе такого известного канцерогена, как бензопирен – одного из компонентов выхлопных газов и табачного дыма. Частота полиморфного аллеля гена CYP1A1, ассоциированного с раком легких, в популяции достигает 7%. Но еще более широкое распространение имеет полиморфный, так называемый, «нулевой» аллель в гене GSTM1. Его частота в различных популяциях колеблется в пределах от 35% до 50%. У гомозигот по «нулевому» аллелю гена GSTM1 активность соответствующего фермента полностью отсутствует, у гетерозигот она снижена. Сочетание неблагоприятных аллелей в генах CYP1A1 и GSTM1 увеличивает риск возникновения рака легких почти в 40 раз. N-ацетилтрансферазы, кодируемые генами NAT1 и NAT2, обеспечивают во II фазе детоксикации ацетилирование многих ксенобиотиков, в том числе лекарств (сульфаниламидов, изониазида, кофеина и др.), а также токсичных нитрозаминов в табачном дыме. Поэтому неудивительно, что полиморфные аллели, снижающие их активность, в сочетании с курением предрасполагают не только к раку легких, но и к другим формам онкологических заболеваний, например к раку молочной железы. Последнее замечание в равной степени относится ко всем обсуждавшимся ранее генам. Интересно отметить, что генетически обусловленное снижение активности ферментов детоксикации предрасполагает не только к раку легких, но и к развитию другой бронхолегочной патологии. Пациенты со сниженной активностью глютатион-S-трансфераз μ1-, T- и P-типов и, особенно с пристрастием к курению, значительно чаще болеют тяжелыми формами хронических обструктивных бронхитов и бронхиальной астмой. Хроническая обструктивная пневмония достоверно ассоциируется с наследственным снижением активности фермента эпоксидгидролазы. С другой стороны, гены ферментов детоксикации вовлечены в патогенез не только онкологических и бронхолегочных заболеваний, но выступают в качестве модификаторов при многих других заболеваниях, связанных с неблагоприятным действием факторов внешней среды, таких, в частности, как остеопороз, эндометриоз, привычная невынашиваемость беременности и др. 2.10.4. Проблемы генетической паспортизации Идентификация огромного количества генов человека и присутствие в геноме большого числа полиморфных аллелей, формирующих наши индивидуальные особенности, в том числе предрасположенности к широко распространенным болезням, в сочетании с разработкой высоко эффективных и простых методов тестирования состояния генов делают реальной перспективу генетической паспортизации населения. Под генетическим паспортом мы понимаем набор сведений, касающихся аллельного состояния определенных генов и/или иных генетических маркеров у отдельных индивидуумов. Прежде всего, определим некоторые этические условия, соблюдение которых является обязательной предпосылкой для начала этой работы. Это добровольное согласие индивидуума на проведение тестирования, полная конфиденциальность полученных результатов и право личной собственности тестируемого индивидуума на все результаты. Зачем нужен генетический паспорт, и какие гены при этом необходимо тестировать? Эти два вопроса неразрывно связаны между собой и выбор тестируемых генов в значительной степени определяется целью паспортизации. Очевидно, что набор тестируемых генов не должен быть слишком большим, и он может быть ограничен десятком или несколькими десятками позиций. Поэтому на первое место при составлении генетического паспорта выдвигается задача оптимального подбора тестируемых генов. Очевидно, что генетический паспорт не может быть одинаковым для всех людей. При решении вопроса о том, какой паспорт нужен тому или иному человеку, необходимо учитывать его пол, возраст, национальность, состояние здоровья, образ жизни, данные семейного анамнеза, финансовые возможности и некоторые другие параметры. Вот один из самых простых примеров. К Вам обратились родители ребенка, среди родственников которых наблюдается несколько больных с сердечно-сосудистой патологией. Родители интересуются, предрасположены ли они и их ребенок к сердечно-сосудистым заболеваниям, и если да, то, что нужно делать, чтобы предотвратить их развитие? Какой генетический паспорт нужно сделать для этой семьи? Прежде всего, нужно составить родословную этой семьи и выявить всех больных сердечно-сосудистой патологией. Затем у всех членов семьи (больных и здоровых) исследовать состояние генов, участвующих в формировании наследственной предрасположенности к сердечно-сосудистой патологии (генов липидного метаболизма, ренин-ангиотензиновой системы, системы свертывания крови и фибринолиза и т. п.). Это позволит выявить те полиморфные аллели исследуемых генов, которые в данной семье ассоциированы с сердечно- сосудистой патологией. Если эти же аллели достались кому-то из консультируемых родителей и их ребенку, то вероятность развития у них в дальнейшем сердечно-сосудистой патологии достаточно высока. В этом случае необходимо совместно со специалистом в области молекулярной кардиологии разработать индивидуальную схему профилактики, направленную на исключение модифицируемых факторов риска сердечно- сосудистых заболеваний. Другой пример. Для человека, профессия которого связана с опасными для жизни мероприятиями, необходим такой генетический паспорт, который позволил бы надежно идентифицировать его останки в случае гибели. Для составления подобного паспорта необходимо провести индивидуальное тестирование ряда высоко изменчивых маркерных локусов. Еще один пример. Человек хочет выбрать профессию, при которой у него будет вероятность соприкосновения с определенными токсическими соединениями. В какой степени он устойчив к болезням, индуцируемым этими веществами? Для ответа на этот вопрос необходимо провести тестирование генов, кодирующих ферменты системы детоксикации. В том случае, если он окажется носителем аллелей, снижающих активность этой системы, работа с вредными веществами будет ему противопоказана. Врачу инфекционисту необходимо тестировать состояние генов, участвующих в формировании иммунной системы, а врачу наркологу необходимо поинтересоваться, имеет ли он наследственную устойчивость к ВИЧ-инфекции. Человеку не следует заниматься спортом или иметь большие физические нагрузки, если он является носителем аллелей, предрасполагающих к раннему инфаркту. Подобных примеров можно приводить еще очень много. Независимо от нашего отношения к проблеме генетической паспортизации работы в этом направлении уже начались. Они получили финансовую поддержку в некоторых штатах США, в Финляндии, большие средства на генетическое тестирование всего населения выделены правительством Эстонии. Однако по многим прогнозам в развитых странах мира рутинной эта работа станет не раньше чем через 10-30 лет. |