Логика. Учебник по логике москва 2000 Оглавление Глава I. Предмет и значение логики Мышление как предмет изучения логики
Скачать 2.39 Mb.
|
§ 1. ПОНЯТИЕ ДОКАЗАТЕЛЬСТВА Познание отдельных предметов, их свойств происходит посредством форм чувственного познания (ощущений и восприятий). Мы видим, что этот дом еще не достроен, ощущаем вкус горького лекарства и т. д. Эти истины не подлежат особому доказательству, они очевидны. Однако во многих случаях, например на лекции, в сочинении, в научной работе, в докладе, в ходе полемики, в судебных заседаниях, на защите диссертации и во многих других, нам приходится доказывать, обосновывать высказанные нами суждения. Доказательность — важное качество правильного мышления. Доказательство и аргументация тесно связаны, но не тождественны. Аргументация — способ рассуждения, включающий доказательство и опровержение, в процессе которого создается убеждение в истинности тезиса и ложности антитезиса как у самого доказывающего, так и оппонентов; обосновывается целесообразность принятия тезиса с целью выработки активной жизненной позиции и реализации определенных программ действий, вытекающих из доказываемого положения1. Понятие «аргументация» богаче по содержанию, чем понятие «доказательство»: целью доказательства является установление истинности тезиса, а целью аргументации еще и обоснование целесообразности принятия этого тезиса, показ его важного значения в данной жизненной ситуации и т. д. В теории аргументации «аргумент» также понимается шире, чем в теории доказательства, ибо первый включает не только аргументы, подтверждающие истинность тезиса, но и аргументы, обосновывающие целесообразность его принятия, демонстрирующие его преимущества по сравнению с другими подобными утверждениями (предложениями). Аргументы в процессе аргументации гораздо разнообразнее, чем в процессе доказательства. Форма аргументации и форма доказательства также не совпадают полностью. Форма аргументации, так же как и форма доказательства, включает в себя различные виды умозаключений (дедуктивные, индуктивные, по аналогии) или их цепь, но, кроме того, сочетая доказательство и опровержение, предусматривает обоснование. Форма аргументации чаще всего носит характер диалога, ибо аргументатор не только доказывает свой тезис, но и опровергает антитезис оппонента, убеждая его или являющуюся свидетелем дискуссии аудиторию в правильности своего тезиса, стремится сделать их своими единомышленниками. Диалог как наиболее аргументированная форма ведения беседы пришел к нам из древности (так, Древняя Греция — родина диалогов Платона, техники спора в форме вопросов и ответов Сократа и т. д.). Но диалог — это внешняя форма аргументации: оппонент (что особенно наглядно проявляется в письменной форме аргументации) может только мыслиться. Внутренняя форма аргументации представляет цепь доказательств и опровержений аргументатора в процессе доказательства им тезиса и в осуществлении убеждения2. В процессе аргументации выработка убеждений у собеседника или аудитории часто связана с их переубеждением. Поэтому в аргументации велика роль риторики в ее традиционном понимании как искусства красноречия. В этом смысле до сих пор представляет интерес «Риторика» Аристотеля, а которой наука о красноречии рассматривается как теория и практика убеждения в процессе доказательства истинности тезиса. «Слово есть великий властелин, который, обладая весьма малым и совершенно незаметным телом, совершает чудеснейшие дела. Ибо оно может и страх изгнать, и печаль уничтожить, и радость вселить, и сострадание пробудить», —- писал древнегреческий ученый Горгий об искусстве аргументации3. Не было периода в истории, когда былюди не аргументировали. Без аргументации высказываний невозможно интеллектуальное общение, ибо она — необходимый инструмент человеческого познания истины. Теория доказательства и опровержения является в современных условиях средством формирования научно обоснованных убеждений. В науке ученым приходится доказывать самые различные суждения, например суждения о том, что существовало до нашей эры, к какому периоду относятся предметы, обнаруженные при археологических раскопках, об атмосфере планет Солнечной системы, о звездах и галактиках Вселенной, о теоремах математики, о направлении развития ЭВМ, об осуществлении долгосрочных прогнозов погоды, о тайнах Мирового океана и космоса. Все эти суждения должны быть научно обоснованы. Доказательство — это совокупность логических приемов обоснования истинности тезиса. Доказательство связано с убеждением, но не тождественно ему: доказательства должны основываться на данных науки и общественно-исторической практики, убеждения же могут быть основаны, например, на религиозной вере, на предрассудках, на неосведомленности людей в вопросах экономики и политики, на видимости доказательности, основанной на различного рода софизмах. Поэтому убедить — еще не значит доказать. Структура доказательства: тезис, аргументы, демонстрация. Тезис — это суждение, истинность которого надо доказать. Аргументы — это те истинные суждения, которыми пользуются при доказательстве тезиса. Формой доказательства, или демонстрацией, называется способ логической связи между тезисом и аргументами. Приведем пример доказательства. Поль С. Брэгг так обосновывает тезис, сформулированный в начале высказывания: «Купить здоровье нельзя, его можно только заработать своими собственными постоянными усилиями: только упорная и настойчивая работа над собой позволит каждому сделать себя энергичным долгожителем, наслаждающимся бесконечным здоровьем. Я сам заработал здоровье своей жизнью. Я здоров 365 дней в году, у меня не бывает никаких болей, усталости, дряхлости тела. И вы можете добиться таких же результатов!»4 Различают несколько видов аргументов. 1. Удостоверенные единичные факты. К такого рода аргументам относится так называемый фактический материал, т. е. статистические данные о населении, территории государства, количестве вооружения, свидетельские показания, подпись лица на документе, научные данные, научные факты. Роль фактов в обосновании выдвинутых положений, в том числе научных, очень велика. В «Письме к молодежи» И. П. Павлов призывал молодых ученых к изучению и накоплению фактов: «Изучайте, сопоставляйте, накопляйте факты. Как ни совершенно крыло птицы, оно никогда не смогло бы поднять ее ввысь, не опираясь на воздух. Факты — воздух ученого. Без них вы никогда не сможете взлететь. Без них ваши «теории» — пустые потуги. Но, изучая, экспериментируя, наблюдая, старайтесь не оставаться у поверхности фактов. Не превращайтесь в архивариусов фактов. Пытайтесь проникнуть в тайну их возникновения. Настойчиво ищите законы, ими управляющие»5. Ценой десятков тысяч проведенных опытов, сбора научных фактов И. В. Мичурин создает свою стройную научную систему выведения новых сортов растений. Сначала он увлекся работами по акклиматизации южных и западноевропейских плодовых культур в условиях средней полосы России. Путем гибридизации И. В. Мичурин сумел создать свыше 300 сортов плодовых и ягодных культур. Это яркий пример того, как подлинный ученый собирает и обрабатывает огромный научный фактический материал. В статье «Статистика и социология» В. И. Ленин писал о доказательной роли фактов следующее: «Точные фаты, бесспорные факты... вот что особенно необходимо, если хотеть серьезно разобраться в сложном и трудном вопросе... Факты, если взять их в их целом, в их связи, не только «упрямая», но и безусловно доказательная вещь... Необходимо брать не отдельные факты, а всю совокупность относящихся к рассматриваемому вопросу фактов, без единого исключения, ибо иначе неизбежно возникнет подозрение, и вполне законное подозрение, в том, что факты выбраны или подобраны произвольно, что вместо объективной связи и взаимозависимости исторических явлений в их целом преподносится «субъективная» стряпня для оправдания, может быть, грязного дела. Это ведь бывает... чаще, чем кажется». 2. Определения как аргументы доказательства. Определения понятий формулируются в каждой науке. Правила и виды определений были рассмотрены в теме «Понятие»; там же были даны многочисленные примеры определений из различных наук: математики, химии, биологии, географии и др. 3. Аксиомы и постулаты. В математике, механике, теоретической физике, математической логике и других науках кроме определений вводят аксиомы. Аксиомы — это суждения, которые принимаются в качестве аргументов без доказательства. 4. Ранее доказанные законы науки и теоремы как аргументы доказательства. В качестве аргументов доказательства могут выступать ранее доказанные законы физики, химии, биологии и других наук, теоремы математики (как классической, так и конструктивной). Законы материалистической диалектики также могут служить аргументами в процессе доказательства. Юридические законы являются аргументами в ходе судебного доказательства. В ходе доказательства какого-либо тезиса может использоваться не один, а несколько из перечисленных видов аргументов. § 2. ПРЯМОЕ И НЕПРЯМОЕ (КОСВЕННОЕ) ДОКАЗАТЕЛЬСТВО Доказательства по форме делятся на прямые и непрямые (косвенные). Прямое доказательство идет от рассмотрения аргументов к доказательству тезиса, т. е. истинность тезиса непосредственно обосновывается аргументами. Схема этого доказательства такова: из данных аргументов(а, b, с...) необходимо следует доказываемый тезис q. По этому типу проводятся доказательства в судебной практике, в науке, в полемике, в сочинениях школьников, при изложении материала учителем и т. д. Широко используется прямое доказательство в статистических отчетах, в различного рода документах, в постановлениях, в художественной и другой литературе. Приведем пример прямого доказательства, использованного И. Буниным в стихотворении «В степи». А к нам идет угрюмая зима: Засохла степь, лес глохнет и желтеет, Осенний ветер, тучи нагоняя, Открыл в кустах звериные лазы, Листвой засыпал долы и овраги, И по ночам в их черной темноте, Под шум деревьев, свечками мерцают, Таинственно блуждая, волчьи очи... Да, край родной не радует теперь! Прямым является и такое доказательство. «Была жуткая ночь: выл ветер, дождь барабанил в окна. И вдруг среди грохота бури раздался вопль ужаса» (А. Конан Дойл). На уроке истории при прямом доказательстве тезиса «Народ — творец истории» учитель, во-первых, показывает, что народ является создателем материальных благ, во-вторых, обосновывает огромную роль народных масс в политике, в-третьих, раскрывает его большую роль в создании духовной культуры. На уроках химии прямое доказательство горючести сахара может быть представлено в форме категорического силлогизма: Все углеводы горючи. Сахар — углевод. _________________ Сахар горюч. В современном журнале мод «Бурда» с помощью прямого доказательства тезис «Зависть — корень всех зол» обосновывается следующими аргументами: «Зависть не только отравляет людям повседневную жизнь, но может привести и к более серьезным последствиям, поэтому наряду с ревностью, злобой и ненавистью, несомненно, относится к самым плохим чертам характера. Подкравшись незаметно, зависть ранит больно и глубоко. Человек завидует благополучию других, мучается от сознания того, что кому-то более повезло». Непрямое (косвенное) доказательство — это доказательство, в котором истинность выдвинутого тезиса обосновывается путем доказательства ложности антитезиса. Если тезис обозначить буквой а, то его отрицание будет антитезисом, т. е. противоречащим тезису суждением. Апагогическое косвенное доказательство (или доказательство «от противного») осуществляется путем установления ложности противоречащего тезису суждения. Этот метод часто используется в математике. Пусть а — тезис (или теорема), который надо доказать. Предполагаем от противного, что а ложно, т. е. истинно не-а Из допущения а выводим следствия, которые противоречат действительности или ранее известным теоремам. Имеем при этом а ложно, значит, истинно его отрицание, т. е., которое по закону двузначной классической логики дает а. Значит, истинно а, что и требовалось доказать. Следует заметить, что в конструктивной логике формула не является выводимой, поэтому ею в доказательствах в конструктивной математике и конструктивной логике пользоваться нельзя; закон исключенного третьего также «отвергается» (не является выводимой формулой), поэтому косвенные доказательства там не применяются. Примеров доказательства «от противного» очень много в школьном курсе математики. Так, например, методом «от противного» доказывается теорема: «Если две прямые перпендикулярны к одной и той же плоскости, то они параллельны». Доказательство этой теоремы начинается словами: «Предположим противное, т. е. что прямые АВ и CDне параллельны». Тогда они пересекаются и образуют треугольник с двумя внутренними прямыми углами, поэтому сумма всех трех внутренних углов треугольника больше 180°. Но это противоречит ранее доказанной теореме о том, что сумма внутренних углов любого треугольника равна 180°. Следовательно, наше предположение, что АВ и CDне параллельны, ложно, из чего (по закону исключенного третьего) вытекает доказанность теоремы о параллельности прямых АВ и CD. Разделительное доказательство (методом исключения). Антитезис является одним из членов разделительного суждения, в котором должны быть обязательно перечислены все возможные альтернативы, например: Преступление могли совершить только либо Аулибо В, либо С. Доказано, что не совершали преступление ни Л, ни В. _______________________________ Преступление совершил С. Истинность тезиса устанавливается путем последовательного доказательства ложности всех членов разделительного суждения, кроме одного. Здесь применяется структура отрицающе-утверждающего модуса разделительно-категорического силлогизма. Заключение будет истинным, если в разделительном суждении предусмотрены все возможные случаи (альтернативы), т. е. если оно является закрытым (полным) дизъюнктивным суждением. (1) Как ранее отмечалось, в этом модусе союз «или» может употребляться как строгая дизъюнкция (v) и как нестрогая дизъюнкция поэтому ему соответствуют две логические схемы (1 и 2). (2) § 3. ПОНЯТИЕ ОПРОВЕРЖЕНИЯ Опровержение — логическая операция установления ложности или необоснованности ранее выдвинутого тезиса. Опровержение должно показать, что: 1) неправильно построено само доказательство (аргументы или демонстрация); 2) выдвинутый тезис ложен или не доказан. Суждение, которое надо опровергнуть, называется тезисом опровержения. Суждения, с помощью которых опровергается тезис, называются аргументами опровержения. Существуют три способа опровержения: 1) опровержение тезиса (прямое и косвенное); 2) критика аргументов; 3) выявление несостоятельности демонстрации. I. Опровержение тезиса (прямое и косвенное) Опровержение тезиса осуществляется с помощью следующих трех способов (первый — прямой способ, второй и третий — косвенные способы). 1. Опровержение фактами — самый верный и успешный способ опровержения. Ранее подробно говорилось о роли подбора фактов, о методике оперирования ими; все это должно учитываться и в процессе опровержения фактами, противоречащими тезису. Должны быть приведены действительные события, явления, статистические данные, результаты эксперимента, свидетельские показания, научные данные, которые противоречат тезису, т. е. опровергаемому суждению. Например, чтобы опровергнуть тезис «На Венере возможна органическая жизнь», достаточно привести такие данные: температура на поверхности Венеры 470—480 градусов Цельсия, а давление 95—97 атмосфер. Эти данные свидетельствуют о том, что жизнь на Венере в известных нам формах невозможна. 2. Установление ложности (или противоречивости) следствии, вытекающих из тезиса. Доказывается, что из данного тезиса вытекают следствия, противоречащие истине. Этот прием называется «сведение к абсурду» (reductio ad absurdum). Как уже отмечалось, в классической двузначной логике метод сведения к абсурду выражается в виде формулы где F— противоречие или ложь. В более общей форме принцип сведения (приведения) к абсурду выражается такой формулой: 3. Опровержение тезиса через доказательство антитезиса. По отношению к опровергаемому тезису (суждению а) выдвигается противоречащее ему суждение (т. е. не-а)и суждение не-а (антитезис) доказывается. Если антитезис истинен, то тезис ложен, третьего не дано. Например, надо опровергнуть широко распространенный тезис «Все собаки лают» (суждение А, общеутвердительное). Для суждения А противоречащим будет суждение О — частноотрицательное: «Некоторые собаки не лают». Для доказательства последнего достаточно привести несколько примеров или хотя бы один пример: «Собаки у пигмеев никогда не лают». Итак, доказано суждение О. В силу закона исключенного третьего если О истинно, то А ложно. Следовательно, тезис опровергнут. II. Критика аргументов Подвергаются критике аргументы, которые были выдвинуты оппонентом в обоснование его тезиса. Доказывается ложность или несостоятельность этих аргументов. Ложность аргументов не означает ложности тезиса: тезис может оставаться истинным. Нельзя достоверно умозаключать от отрицания основания к отрицанию следствия. Но достаточно бывает показать, что тезис не доказан. Иногда бывает, что тезис истинен, но человек не может подобрать для его доказательства истинные аргументы. Случается и так, что человек не виновен, но не имеет достаточных аргументов для доказательства этого. III. Выявление несостоятельности демонстрации Этот способ опровержения состоит в том, что показываются ошибки в форме доказательства. Наиболее распространенной ошибкой является подбор таких аргументов, из которых истинность опровергаемого тезиса не вытекает. Доказательство может быть построено неправильно, если нарушено какое-либо правило дедуктивного умозаключения. Обнаружив ошибки в ходе демонстрации, мы опровергаем ее ход, но не опровергаем сам тезис. Доказательство же истинности тезиса обязан дать тот, кто его выдвинул. Часто все перечисленные способы опровержения тезиса, аргументов, хода доказательства применяются не изолированно, а в сочетании друг с другом. |