Хрестоматия. Петухов. Том 3. Книга 2. Учебник по общей психологии, предназначено для проведения семинарских занятий по данному курсу и самостоятельного чтения
Скачать 20.88 Mb.
|
т (f3) – т0 (f3)-m(f)-m0 (f), (3) где т (f3) — фиксированный контраст эталонной решетки с постоянной пространственной частотой f3; m (f) — контраст решетки с переменной пространственной частотой /, подобранный таким образом, что субъективные контрасты обеих решеток равны; m0 (f3), m0 (f) — пороговые контрасты эталонной и переменной решеток соответственно. Это равенство означает, что любая изоконтрастная кривая должна получаться из пороговой кривой сдвигом вдоль оси ординат на величи- Логвиненко А.Д. Передаточная функция всей зрительной системы в целом 111 ну, пропорциональную контрасту стандартной решетки. Именно такое соотношение между пороговыми и изоконтрастными кривыми было получено экспериментально1. Однако этот автор помимо эталонной решетки с частотой 5 угл. град, использовал всего лишь две переменные решетки 1,67 и 15 угл. град.-1. Ясно, что три точки слишком мало для того, чтобы судить о выполнении условия (3). Более того, ряд исследователей указывают на то, что форма изоконтрастной кривой изменяется с изменением контраста эталонной решетки2. Так, по данным некоторых авторов, изоконтрастные кривые становятся практически горизонтальными линиями для эталонных решеток с контрастом, близким к единице3. Поэтому изоконтрастные кривые могут служить средством построения передаточной функции зрительной системы лишь при условии малости контраста эталонной решетки. Только в этом случае можно надеяться на выполнение равенства (3). Наименьший доступный испытуемому контраст эталонной решетки — это ее пороговый контраст. В некотором смысле кривую пороговых контрастов можно рассматривать как разновидность изоконтрастной кривой. Действительно, согласно существующим ныне представлениям о механизме обнаружения <...> испытуемый в пороговой ситуации отвечает реакцией «да», если субъективный контраст решетки превышает некоторый фиксированный уровень , называемый критерием испытуемого. Существуют некоторые косвенные свидетельства в пользу того, что критерий е не зависит от частоты решетки4. Если это так, то кривая пороговых контрастов — это изоконтрастная кривая, соответствующая субъективному контрасту, равному критерию испытуемого. Величина, обратная пороговому контрасту, называется контрастной чувствительностью. Зависимость контрастной чувствительности от пространственной частоты синусоидальной решетки будем называть функцией контрастной чувствительности. Таким образом, мы приходим к выводу, что функция контрастной чувствительности совпадает с передаточной функцией зрительной системы с точностью до некоторого постоянного множителя. В дальнейшем разновидность метода, связанного с построением функции контрастной чувствительности, будем называть пороговым методом идентификации передаточной функции. 1 См.: Kulikowshi J.J. Effective contrast constancy linearity of contrast sensation // Vision Research. 1976. 16. P. 1419-1431. 2 См.: Watanabe A., Mori Т., Nagata S., Hiwatashi K. Spatial sine-wave responses of the human visual system // Vision Research. 1968. 8. P, 1245-1264; Blakemore C„ Campbell F.W, On the existence of neurones in the human visual system selectively sesitive to the orientation and size of retinal images /'/ J. Physiol. 1969. 205. P. 237-260. 3См.: Georgeson MA., Sullivan G.D. Contrast constancy: deblurring in human vision by spatial frequence channels // J. Physiol. 1975. 252. P. 627-656. 4 См.: Sachs M., Nachmias J., Robson J.G. Spatial-frequency channels in human vision // J. Opt. Soc. Am. 1971. 61. P. 1176-1186. 112 Тема 17. Экспериментальные исследования восприятия Метод изоконтрастных кривых для идентификации передаточной функции зрительной системы, как правило, применяют в его пороговом варианте. Одним из немногих авторов, которые использовали непороговый вариант этого метода, является О. Врингдал1. Он определял отношение контрастов (субъективного к физическому) при различных величинах физического контраста для пространственных частот в диапазоне 0,5—9,0 угл.град.-1 со средней яркостью 0,25:20 нит методом подравнивания. Испытуемого просили подравнять яркость однородного поля к максимальной яркости, которую имеют светлые полосы синусоидальной решетки. Затем испытуемый должен был установить яркость однородного поля таким образом, чтобы его светлота равнялась наиболее темному участку на синусоидальной решетке. Отношение этих величин принималось им за величину субъективного контраста. Построенные этим автором кривые, показывающие зависимость отношения субъективного к объективному контрасту от пространственной частоты примечательны в двух отношениях. Во-первых, все они имеют максимум на частоте 5—7 угл.град.-1. Во-вторых, отношение контрастов превышает единицу для всех пространственных частот исследовавшегося диапазона, т.е. зрительная система в этом диапазоне усиливает контраст. Явление усиления контраста хорошо известно в психологии зрительного восприятия2. Однако, как правило, это явление связывается с более сложными процессами обработки зрительной информации, нежели обсуждаемые здесь. Представляется необходимым подвергнуть явление усиления контраста синусоидальной решетки дополнительному исследованию с применением более тонких психофизических методов. 1 См.: Bryngdahl О. Characteristics of the visual system: psychophysical measurements of the responce to spatial sine-wave stimuli in the mesopic region // J. Opt. Soc. Am. 1964. 54. P. 1152-1160; Bryngdahl O. Regular occurence of simultaneous brightness contrast in the mesopic region // Kybernetik. 1965. 2. P. 227-236. 2 См.: Heineman E.G. Simultaneous brightness induction /7 D.Jameson, L.M.Hurvich (Eds.). Handbook of Sensory Physiology. N. Y., 1972. Vol. VII/4. Visual Psychophysics. Часть 2. Факты, закономерности и результаты исследований восприятия 1. Восприятие цвета. Основные субъективные характеристики цвета и их объективные корреляты. Адаптация. Явление Пуркинье. Виды контрастов. Законы смешения цветов. Цветовой круг и треугольник. Цветовое тело. Теории цветового зрения Б.М. Величковский, В. П. Зинченко, А.Р. Лурия ВОСПРИЯТИЕ ЦВЕТА1 Зрительная система человека чувствительна к электромагнитным колебаниям, длина волны которых лежит в диапазоне от 380 до 720 нм (миллионных долей миллиметра). Эта область электромагнитных колебаний называется видимой частью спектра. Рецепция падающего на сетчатку света представляет собой только первую ступень в сложной цепи процессов, приводящих к зрительному отражению окружающего нас мира. Структура процесса восприятия цвета меняется в зависимости от оптических свойств поверхностей предметов, которые должны быть восприняты наблюдателем. Эти поверхности могут светиться, излучая больше света, чем на них падает; блестеть, отражая весь падающий на них свет; отражать лишь часть падающего света и, наконец, быть прозрачными, т.е. не оказывать свету существенных препятствий. Значительное большинство окружающих нас предметов относится к группе тел, частично поглощающих и частично отражающих падающий на них от искусственных или естественных источников свет. Цвет этих предметов объективно характеризуется их отражательной способностью. Поэтому для восприятия цвета предметов зрительная система должна учитывать не только свет, отраженный поверхностью предмета, но также характеристики освещающего эту поверхность света. Однако в том случае, когда поверхность светится или специально исключены признаки ее принадлежности какому-либо предмету, восприятие цвета может основываться лишь на анализе непосредственно излучаемого поверхностью света. Эта ситуация имеет место, если участок 1 Величковский Б.М., Зинченко В.П., ЛурияА.Р. Психология восприятия. М.: Изд-во Моск. ун-та, 1973. С. 81, 83, 109-126. 114 Тема 17. Экспериментальные исследования восприятия поверхности рассматривается через отверстие в большом темном или сером экране. Благодаря экрану скрадывается расстояние до поверхности и воспринимается диффузный цвет, относительно равномерно заполняющий отверстие. Такие цвета называются апертурными. Благодаря относительной простоте процессов восприятия апертурных цветов, они изучены в настоящее время более полно, чем восприятие цвета предметов. Кроме того, исследование восприятия апертурных цветов имеет важное практическое значение, так как именно с ними приходится иметь дело операторам, работающим с современными индикаторами. Широкое использование цвета для кодирования информации связано с относительной легкостью различения апертурных цветов. Цветовые ощущения, возникающие при восприятии апертурных цветов, полностью описываются тремя характеристиками или качествами. К ним относятся светлота, цветовой тон и насыщенность. Первая из этих характеристик — светлота — иногда также называется видилюй яркостью. Светлота определяется прежде всего физической яркостью света. Как показали психофизические исследования, зрительная система способна реагировать на очень незначительные изменения яркости света: дифференциальный порог яркости равен всего лишь 0,01. Измеряемые с помощью психофизических методов количественные отношения между интенсивностью раздражителя и величиной ощущения не остаются постоянными. В зависимости от условий, в которых осуществляется восприятие, происходит изменение как абсолютной, так и разностной чувствительности. Важнейшим фактором, определяющим уровень чувствительности, является интенсивность действующих на организм раздражителей. Например, изменение освещенности предметов в течение суток настолько значительно, что будь чувствительность глаза неизменной, человек либо оказывался слепым на ярком солнечном свете, либо был совершенно неспособен к восприятию в сумерках. Этого не происходит потому, что в условиях недостаточной освещенности абсолютная зрительная чувствительность обостряется, а на ярком свету — снижается. Подобное приспособительное изменение чувствительности в зависимости от условий среды называется адаптацией. <...> Анализ динамики световой чувствительности при адаптации к темноте позволяет установить момент перехода от колбочкового к палочковому зрению. Для этого адаптированного к дневному свету наблюдателя помещают в полную темноту и периодически измеряют нижний абсолютный порог яркости. Результаты измерений показывают, что вначале порог быстро падает, стабилизируясь на постоянном уровне через 8— 10 мин, а затем наступает вторичное резкое снижение порога, которое прекращается лишь через 30—40 мин после начала адаптации (рис. 1). Величковский Б.М., Зинченко В.П., Лурия А.Р. Восприятие цвета 115 Рис. 1. Изменение нижнего абсолютного порога яркости в ходе зрительной темновой адаптации: I— тестирование белым светом; II— тестирование красным светом Такой «двухступенчатый» вид кривая темновой адаптации имеет только тогда, когда пороги тестируются белым светом. Если используется красный свет, к которому палочки нечувствительны, кривая адаптации состоит только из своей первой ветви. Это доказывает, что точка перелома на кривой темновой адаптации соответствует моменту перехода от колбочкового к палочковому зрению. Процесс световой адаптации продолжается обычно всего лишь доли секунды. Видимая яркость меняется также в зависимости от длины волны раздражителя. При дневном освещении более яркими кажутся тона, сдвинутые к длинноволновой, красной части спектра. В сумерках же кривая спектральной чувствительности сдвигается в сторону коротковолнового конца видимого спектра (рис. 2). В этом случае наблюдается потемнение крас- Д Рис. 2. Кривые спектральной чувствительности глаза в темноте (а) и на свету (б). 116 Тема 17, Экспериментальные исследования восприятия Рис. 3. Яркостный контраст ного и высветление синего тонов. Это явление носит имя открывшего его чешского физиолога Яна Пуркинье. Большой интерес представляют явления зрительного контраста. Одновременный или пространственный яркостный контраст заключается в подчеркивании зрительной системой различий яркости между соседними участками зрительного поля. Так, серый квадрат на черном фоне кажется светлее, чем такой же квадрат на светлом фоне (рис. 3). Американские исследователи Х.К.Хартлайн и Ф.Ратлиф при помощи электрофизиологических методов обнаружили наличие тормозных взаимодействий между рецепторными элементами глаза пресноводного рачка limulus. Тормозное влияние, оказываемое рецептором А на рецептор Б, оказалось пропорциональным освещению А и пространственной близости обоих элементов. Это явление получило название латерального торможения. В результате латерального торможения, оказываемого соседними ярко освещенными элементами, расположенный на краю слабоосвещенной области рецептор будет разряжаться с меньшей частотой, чем элементы, освещенные столь же слабо, но расположенные дальше от границы двух областей. Напротив, рецептор, лежащий на краю ярко-освещенной области, будет разряжаться с большей частотой, чем рецепторы, расположенные в глубине этой области. Таким образом, благодаря латеральному торможению, картина возбуждений элементов сетчатки подчеркивает границы между областями различной яркости. Тормозные взаимодействия были обнаружены в зрительных системах высокоорганизованных животных, включая обезьян. В то же время существуют данные о значительно более сложном, центральном происхождении явления контраста. Так, например, на контраст влияет сознательная установка наблюдателя. Если знак, изображенный на рис. 4, воспринимать как две ла- Величковский Б.М., Зинченко В,П., Лурия А.Р. Восприятие цвета 117 Рис. 4. Влияние установки наблюдателя на яркостный контраст (по: Коффка К., 1935) тинские буквы V, то наблюдается выраженный яркостный контраст: левая буква кажется более светлой, чем правая. Если же воспринимать этот знак как одну букву W, то контраст исчезает, Наряду с только что рассмотренным одновременным контрастом известен также последовательный яркостный контраст. Он выступает в виде последовательных образов — зрительных ощущений света, продолжающихся некоторое время после окончания действия раздражителя. Различают отрицательные и положительные последовательные образы. Первые возникают, если при нормальном освещении в течение примерно 30 с рассматривать ярко освещенный объект, а затем быстро заменить его равномерным полем нейтрального цвета с более низкой яркостью. В этом случае испытуемый некоторое время видит перед собой темное пятно, по форме отдаленно напоминающее объект. Если же объект освещается в темноте вспышкой света, то возникает положительный последовательный образ. Как правило, он исчезает значительно быстрее, чем отрицательный. <...> Второй характеристикой апертуарных цветов является цветовой тон. Монохроматические, т.е. вызванные светом с одной длиной волны, красный, зеленый, желтый и другие цвета одинаковой видимости яркости различаются как раз по своему цветовому тону. Это качество цветовых ощущений связано прежде всего с длиной волны раздражителя. При переходе от коротковолновых к длинноволновым электромагнитным колебаниям цветовой тон меняется следующим образом: раздражители с короткими длинами волн воспринимаются фиолетовыми, затем следует узкий участок чистого синего цвета, который кончается сине-зелеными тонами, далее находится узкая полоска чистого зеленого цвета, за которым следуют желто-зеленые тона, потом появляется чистый желтый цвет и, наконец, в длинноволновой области — желто-красные цветовые тона. Таким образом, монохроматические цветовые тона переходят друг в друга, образуя непрерывный ряд. Этот ряд можно превратить в замк- 118 Тема 17. Экспериментальные исследования восприятия нутый цветовой круг, если добавить к нему пурпурные (фиолетово-красные) цветовые тона, не являющиеся монохроматическими (рис. 5). Зрительная система способна различать очень тонкие оттенки цветового тона. Общее число различных оттенков монохроматических тонов достигает 150—200. Минимальные разностные пороги, равные 1 нм, найдены в сине-зеленой (485 нм) и зеленовато-желтой (575 нм) частях спектра. Если длина волны однозначно определяет цветовой тон, то обратное утверждение неверно. Одному и тому же цветовому тону соответствует бесчисленное множество различных комбинаций монохроматических раздражителей. Законы смешения цветов были открыты И.Ньютоном не позже 1692 г. Однако полностью их справедливость была доказана только в прошлом веке. Известны три таких закона. 1. Для каждого цветового тона существует дополнительный цветовой тон, смешение с которым в определенной пропорции дает ощущение одного из оттенков серого (нейтрального) цвета. Следующие пары цветов являются дополнительными: красный (660 нм)— сине-зеленый (497 нм) оранжевый (610 нм) — зелено-синий (494 нм) желтый (585 нм)— синий (485 нм) желто-зеленый (570 нм) — фиолетовый (430 нм). Легко видеть, что дополнительные цветовые тона расположены примерно на противоположных концах диаметров цветового круга. Величковский Б.М., ЗинченкоВ.П., Лурия А.Р. Восприятие цвета 119 Рис. 6. Пропорции красного (650 нм), зеленого (530 нм) и синего (460 нм) цветов, необходимые для получения всех цветовых тонов спектра
Наиболее важное следствие из законов смешения цветов заключается в том, что с помощью любых трех цветов, не являющихся дополнительными, можно получить любой цветовой тон. Тройки цветов, отвечающие этому требованию, называются основными цветами. К ним относятся, например, красный, синий и зеленый цвет. На рис. 6 показано, в каких пропорциях нужно брать монохроматические красный, зеленый и синий тона, чтобы получить все остальные цветовые тона видимого спектра. Степень отличия некоторого цветового тона от нейтрального тона, равного с ним по светлоте, определяет третью и последнюю характеристику цветовых тонов — их насыщенность. Физическим коррелятом насыщенности является «зашумленность» спектрального состава света электромагнитными колебаниями с другими длинами волн. Насыщенность зависит также от яркости стимулов. Она максимальна для средних уровней освещенности и падает как при увеличении, так и при уменьшении яркости, вплоть до полного обесцвечивания раздражителей. Синие, красные и пурпурные цвета кажутся сильно насыщенными и остаются насыщенными даже при низких уровнях яркости, желтые и зелено-желтые становятся относительно насыщенными при больших яркостях. Как и в случае видимой яркости, существуют цветовая адаптация и цветовой контраст. Они выражаются в общем или локальном уменьшении воспринимаемой величины насыщенности цветового тона при его 120 Тема 17. Экспериментальные исследования восприятия белый длительном рассматривании и в одновре- менном возрастании видимой насыщенности дополнительного цвета. с-з Цветовой последовательный контраст проявляется в виде цветовых последовательных образов. Например, длительная фиксация красного квадрата приводит к тому, что наблюдатель видит затем некоторое время перед собой зеленоватый квадрат, смещающийся вместе с движениями глаз. Еще И.В.Гёте обратил внимание на то, что цвета последовательных образов несколько отличаются от дополнительных, по сравнению с которыми они сдвинуты к краям спектра. ЧЕРНЫЙ Рис, 7. Цветовое тело (см. текст) Все многообразие апертурных цветов, определяемых тремя рассмотренными характеристиками, можно представить в виде простой пространственной модели — цветового тела (рис. 7). Оно представляет собой двойную коническую пирамиду, по вертикальной оси которой происходит увеличение светлоты цвета. Каждое горизонтальное сечение цветового тела является цветовым кругом для данного уровня видимой яркости. Насыщенность цветового тона уменьшается при движении по радиусу цветового круга, в центре которого находится нейтральный серый цвет. Уменьшение радиусов цветовых кругов на концах цветового тела объясняется уменьшением насыщенности цветов при низких и высоких уровнях видимой яркости. Вследствие того, что все цветовые тона, включая нейтральные, могут быть получены с помощью смешения трех основных цветов, на практике для описания цветов пользуются цветовым телом, сечение которого представляет собой не круг, а треугольник. На вершинах этого цветового треугольника находятся три основных цвета: красный, зеленый, синий. На рис. 8 показан цветовой треугольник, принятый Международной осветительной комиссией (МОК) в качестве эталонного. Условные коэффициенты на осях X и Y определяют координаты каждого цвета внутри цветового треугольника. Укажем координаты цветности некоторых цветов;
и т.д. Величковский Б.М.. Зинченко В.П., Лурия А.Р. Восприятие цвета 121 О 0,1В т 0,20 0,30 О.Ш 0,М 0.S0 0,70 D.80X Рис. 8. Цветовой треугольник МОК (см.текст) Существуют две классические теории цветовых ощущений, называемые трехкомпонентной теорией и теорией противоцветов. Первые идеи о |