Хрестоматия. Петухов. Том 3. Книга 2. Учебник по общей психологии, предназначено для проведения семинарских занятий по данному курсу и самостоятельного чтения
Скачать 20.88 Mb.
|
трехкомпонентности цветового зрения были высказаны М.В.Ломоносовым в его «Слове о происхождении света, новую теорию о цветах представляющем, июля 1 дня 1756 года говорением». Эта теория была детально разработана в XIX в. английским физиком Т.Юнгом и Г.Гельмгольцем. Теория основана на предположении, что число различных рецепторов цвета в сетчатке должно быть невелико. Действительно, если предположить, что для каждого из воспринимаемых нами оттенков существует специальный рецептор, то в условиях монохроматического освещения работало бы меньше одного процента рецепторов и зрение должно было бы резко ухудшаться. Простые наблюдения показывают, что этого не происходит. 122 Тема 17. Экспериментальные исследования восприятия Так как все цвета могут быть получены с помощью смешения трех основных, то было сделано предположение, что в сетчатке существуют три типа рецепторов, чувствительных к синему (фиолетовому), зеленому и красному цветам. Альтернативную теорию выдвинул Э.Геринг (1878)1. В основу теории противоцветов легли данные о подробно изученных им явлениях контраста, а также некоторые психологические наблюдения. Так, большинство людей выделяют в качестве основного «главного») цвета, помимо красного, зеленого и синего цветов, также и желтый. Э.Геринг считал, что в сетчатке находятся три цветочувствительных субстанции. Их разложение приводит к восприятию белого, зеленого и желтого цветов, а восстановление соответственно к восприятию черного, красного и синего цветов. Обе теории долгое время противопоставляли друг другу. Одной из областей, в которой их сторонники искали подтверждения своих взглядов, было исследование различных аномалий цветового зрения. Нарушения цветового зрения встречаются приблизительно у 8% мужчин и 0,5% женщин. Эти нарушения, по крайней мере отчасти, являются наследуемыми. Было бы неправильно называть этих людей цветослепыми, так как лишь один исключительно редкий вид расстройства цветового зрения связан с полной неспособностью различать цветовые тональности. Люди с такими недостатками называются монохроматами. В этом случае все длины волн и все смеси различаются исключительно по своей светлоте. Значительная часть нарушений цветового зрения связана с затруднениями в дифференциации красного и зеленого цветов. Особые трудности эти люди испытывают при различении таких цветов, как голубой и розовый. Трехкомпонентная теория, исходящая из существования трех первичных видов рецепторов, объясняет эту аномалию выпадением рецепторов, чувствительных к красному или зеленому цветам. И действительно, было обнаружено, что существуют две разновидности красно-зеленой слепоты. В опытах на получение желтого цвета одним из этих цветоаномалов требовалось гораздо больше красного, а другим — зеленого цвета, чем людям с нормальным зрением. Первая разновидность — нечувствительность к красному — была названа протанопией, а вторая — нечувствительность к зеленому — дейтеропией. В пользу трехкомпонентной теории говорит, в свою очередь, существование слепоты на синий цвет, который путается в этом случае с зеленым. Это нарушение встречается почти столь же редко, как и полная цветослепота. В то же время более детальные исследования показали, что красно-оранжево-желто-зеленая часть спектра преобразуется в восприятии цветоаномала не в оттенки зеленого (протанопия) или оттенки красного (дейтеропия), а в оттенки желтого цвета. Можно предположить, таким 1 Некоторые замечания, предвосхищающие теорию Э.Геринга, можно найти у Леонардо да Винчи и И.В.Гёте. Величковский Б.М., Зинченко В.П., Лурия А.Р, Восприятие цвета 123 образом, что красно-зеленая слепота представляет собой дихроматическое желто-синее зрение. Этот факт в большей степени соответствует теории противоцветов Э.Геринга. Аргументом в пользу теории противоцветов служат полученные на нормальных людях данные о порядке исчезновения цветового тона при перемещении стимулов в периферическое зрение. В этом случае первыми одновременно исчезают красные и зеленые цвета, от которых остается только желтый оттенок. Желтый и синий цветовые тона воспринимаются в более широкой области зрительного поля. Эти эффекты следует учитывать при использовании цветовой индикации. Многочисленные доказательства как в пользу трехкомпонентной теории, так и в пользу теории противоцветов позволили Л.А.Орбели предположить, что справедливы обе теории. Однако каждая из них описывает закономерности переработки информации о цвете на различных уровнях зрительной системы. В последние годы детальное обоснование этой точки зрения было проведено американскими исследователями Л.М.Гурвичем и Д.Джексон. На рис. 9 показана разработанная ими схема отношений между тремя светочувствительными субстанциями и четырьмя реципроктными процессами, лежащими в основе цветового зрения. Недавно были получены прямые нейрофизиологические доказательства справедливости этой модифицированной теории. Прежде всего удалось показать, что в сетчатке действительно имеются три светочувствительных вещества. Один из самых тонких опытов в этой области был проведен английскими исследователями П.К.Брауном и Дж.Уолдом. Рис. 9. Упрощенная схема взаимоотношений между светочувствительными веществами и тремя парами противоположных процессов: сине-желтым, красно-зеленым и бело-черным (по: Гурвич JIM., Джемсон Д., 1966) 124 Тема 17. Экспериментальные исследования восприятия Рис. 10. Регистрация импульсов одиночных ганглиозных клеток сетчатки (по: Гранит Р., 1955) После избирательной адаптации к соответствующим дополнительным цветам выявлено наличие рецепторов для синего (I), зеленого (II) и красного (III) цветов В их экспериментах миниатюрный пучок монохроматического света проецировался через зрачок на одиночные колбочки сетчатки испытуемого и с помощью микроспектрофотометра измерялось количество отраженного и вернувшегося через зрачок света. Было установлено, что существуют три типа колбочек, имеющих максимумы поглощения при 450, 525 и 535 нм. Электрофизиологические опыты с микроэлектродной регистрацией активности ганглиозных клеток сетчатки также говорят о существовании трех типов цветовых рецепторов. Шведский физиолог Р.Гранит показал, что возрастание активности нейронов возникает в ответ на освещение сетчатки синим, зеленым или красным светом (рис. 10). Если исследования механизмов цветового зрения на уровне сетчатки подтверждают трехкомпонентную теорию, то исследования на более высоком уровне латерального коленчатого тела говорят в пользу теории противоцветов. Целый ряд работ, среди которых можно отметить исследования американского физиолога Р.Л.де Валуа и Е.Н.Соколова, показали, что на этом уровне наблюдаются реакции оппонентного типа. Например, были найдены нейроны, увеличивающие активность в ответ на освещение сетчатки красным светом и уменьшающие ее в ответ на зеленый свет. Наряду с такими «красно-зелеными» элементами были найдены такке «желто-синие» и «бело-черные» нейроны. Таким образом, классические теории цветового зрения не исключают, а дополняют друг друга. Г. Глейтман, А. Фридлунд Д, Райсберг ИССЛЕДОВАНИЕ ОЩУЩЕНИЙ1 Развитие психологических методов, а также разнообразных психологических техник вооружило психологию серьезным инструментарием для изучения ощущений. Мы в основном остановимся на зрении, поскольку есть основания полагать, что именно эта модальность доминирует в перцептивной системе человека. Но сначала сделаем краткий обзор других видов ощущений, снабжающих нас информацией об окружающем мире и о нашем положении в нем. Кинестетика и вестибуляторная система Эти чувства информируют организм о его собственных движениях и местоположении в пространстве. Перемещения костей скелета (т.е. движения рук, ног, шеи и т.д.) отслеживаются с помощью кинестетики (собирательное название всей информации, поступающей от рецепторов, расположенных в мышцах, связках и суставах). Другая группа рецепторов сигнализирует обо всех движениях головы — произвольных или возникающих в результате воздействия внешних сил. Эти рецепторы локализованы в трех полукружных каналах, расположенных в преддверии внутреннего уха (рис. 1). Внутри этих каналов находится вязкая жидкость, которая приходит в движение при изменении положения головы. От этого перемещения деформируются волосковые клетки, которые расположены на концах каждого канала. Изменяя свою форму, эти волосковые клетки возбуждают нервный импульс. Совокупность импульсов от 1 Глейтман Г., Фридлунд А., Райсберг Д, Основы психологии. СПб.: Речь, 2001. С. 211-212, 216-226. 126 Тема 17, Экспериментальные исследования восприятия ___ Слуховой * '* \ нерв Полукружные каналы Б А Рис. 1. Вестибулярная система: А — местоположение внутреннего уха. Этот парный орган расположен с обеих сторон черепа. Остальные структуры внутреннего уха обслуживают чувство слуха1; Б — изображение вестибулярного аппарата2 каждого из каналов дает информацию о причинах и амплитуде движения головы. Одной из жизненно важных функций системы полукружных каналов является обеспечение устойчивой «платформы» для зрения. В процессе ходьбы мы все время совершаем движения головой. Для того чтобы компенсировать эти бесконечные движения, нашим глазам приходится совершать равнозначные перемещения. Такое приспособление происходит благодаря наличию вестибулярной системы, тесно связанной с мозжечком в заднем отделе головного мозга, который нивелирует каждый поворот головы равным и пртивонаправленным движением глаз. Эти перемещения запускаются благодаря сообщениям, приходящим из трех полукружных каналов, которые затем передаются соответствующим мышцам каждого глаза. Таким образом, зрительная система является совершенно стабильной. <...> Кожные чувства Стимуляция кожных рецепторов информирует организм о том, что находится непосредственно вблизи тела. Неудивительно, что чувствительность кожи особенно сильна в тех частях тела, с помощью которых 1 См.: Krech D., Crutchflld R. Elements of psychology. N. Y.: Knopf, 1958. 2 См.: Kalat J.W. Biological psychology. Belmont, Calif.: Wadsworth, 1984. ГлейтманГ. ФридлундА, РайсбвргД. Исследование ощущений 127 люди изучают окружающий мир «без посредников»: это ладони и пальцы, губы и язык. Получаемые с помощью этих «разведчиков» ощущения сказываются на организации проекционной зоны коры головного мозга, отвечающей за телесный опыт. Как мы уже знаем, существующее распределение кортикального пространства крайне неравномерно, причем львиную долю поверхности коры занимают участки, отвечающие за такие чувствительные части нашего организма, как лицо, рот и пальцы Сколько существует кожных чувств? Аристотель полагал, что все ощущения, связанные с кожей, можно свести к одному — прикосновению. Но в наши дни исследователи выделяют по меньшей мере четыре различных кожных чувства: давление, тепло, холод и боль. Некоторые удлиняют этот список и включают в него другие ощущения. Среди них — ощущения вибрации, щекотки и почесывания. Каким же образом такие разные виды сенсорной информации кодируются в нашей нервной системе? Ответ на этот вопрос впервые дал психолог Дж.Мюллер (1801 — 1858). Он провозгласил доктрину специфических нервных энергий — заявил о том, что различия в качествах ощущений вызваны различиями нервных структур, возбуждаемых разными стимулами. Например, какая-то одна нервная структура может дать сигнал «тепло», а другая — «холодно», и т.д. Верно ли это? Без сомнений можно ответить: «Да». Есть все основания полагать, что разнообразные ощущения давления, к примеру, вызваны специфическими рецепторами, находящимися в коже <...>. Некоторые из этих рецепторов расположены вокруг волосяных фолликул в коже; они реагируют на движения волоса. Другие существуют в виде капсул, которые легко сжимаются при малейшей деформации кожи. Капсулы одного вида реагируют на постоянную вибрацию, капсулы другого вида — на внезапные раздражения кожи, третий вид капсул отзывается на равномерное надавливание. Очевидно, что существует не один вид тактильных рецепторов, а несколько. Гораздо меньше нам известно о рецепторной системе, воспринимающей тепло, холод и боль. Возможно, за некоторые из этих ощущений отвечают свободные нервные окончания, не имеющие специфического органа-эффектора и находящиеся в коже. Раньше принято было считать, что эти свободные нервные окончания передают информацию о тепле, холоде и боли, но, возможно, некоторые из них являются дополнительными рецепторами давления1. 1 См.: Sherrick СЕ,, Cholewiak R.W. Cutaneous sensitivity // K.R.Boff, L.Kaufman, J.P.Thomas (Eds.). Handbook of perception and human performance. N. Y.: Wiley, 1986. Ch. 12. 128 Тема 17. Экспериментальные исследования восприятия Чувство вкуса Чувство вкуса играет роль стража пищеварительной системы организма, поставляя информацию о тех веществах, которые стоит или не стоит пускать внутрь. Его задача — отвадить яды и пригласить пищу. ¥ большинства обитающих на суше млекопитающих эту функцию выполняют специальные рецепторные органы, заполненные вкусовыми сосочками, которые очень чувствительны к растворенным в воде химическим веществам. В среднем у человека около 10000 таких вкусовых сосочков. Большая часть их находится на кончике языка, но некоторые расположены и на других участках полости рта. Нервные волокна от этих рецепторов передают сообщение к головному мозгу: сначала — в продолговатый мозг, а далее — в таламус и кору. Вкусовые ощущения Многие исследователи полагают, что существует четыре основных вкуса: кислый, сладкий, соленый п горький. На их взгляд, все остальные вкусовые ощущения образовались от смешения этих первичных вкусов. Так, грейпфрут на вкус кисло-горький, а лимонад — кисло-сладкий. По-видимому, каждый из этих основных вкусов играет свою неповторимую биологическую роль. Большинство организмов привлекает сладкий вкус. Вероятно, это происходит вследствие того, что многие питательные вещества содержат в себе в той или иной форме сахар. А поскольку большинство ядовитых веществ имеет горький вкус, на ранних стадиях развития человечество выработало защитные рефлексы против их поглощения — отрыжку, рвоту, — которые координируются задними отделами головного мозга1. Какие же стимулы вызывают эти четыре основных вкуса? До сих пор у нас нет исчерпывающего ответа на этот вопрос. Нам точно известно, что вкус кислого возникает благодаря работе рецепторов, чувствительных к кислоте, а соленый вкус — это результат чувствительности некоторых рецепторов к наличию натрия. Со сладким и горьким вкусами дело обстоит сложнее. И тот и другой, как правило, вызываются сложными органическими молекулами, но до сих пор не существует четко сформулированных правил, описывающих взаимосвязь между молекулярной структурой и получаемым вкусом. Сладкий вкус вызывают производные различных Сахаров, но также и искусственного подсластителя — сахарина, который по своему химическому составу сильно от- 1 См.: Shepherd G.M. Discrimination of molecular signals by the olfactory receptor neuron // Neuron. 1994. 13. P, 771-790; Shepherd G.M. Neurobiology. N. Y.: Oxford University Press, 1994. Глейтман Г., Фридлунд А, Райсберг Д. Исследование ощущений 129 личается от Сахаров. Горький вкус вызывается разнообразными химическими веществами, что порождает гипотезу о существовании нескольких видов рецепторов горького вкуса. Вкус и сенсорное взаимодействие Вкусовые ощущения могут послужить иллюстрацией к закономерности, которой подчинены все модальности. Эту закономерность мы назовем сенсорным взаимодействием. Она описывает тот факт, что реакция сенсорной системы на любой стимул обычно зависит не только лишь от одного этого стимула. На реакцию влияют и другие стимулы, воздействующие на систему в данный момент или взаимодействовавшие с ней некоторое время назад. Один из вариантов сенсорного взаимодействия можно наблюдать довольно часто. Предположим, что вкусовой стимул предъявляется непрерывно в течение 15 с или дольше. В результате произойдет адаптация — феномен, обнаруженный во всех сенсорных системах. Например, если язык постоянно стимулировать чем-то соленым, чувствительность ко всему соленому понизится. Аналогично, после долгой и непрерывной дегустации раствора хинина он будет казаться все менее и менее горьким. Однако этот адаптационный процесс обратим. Если прополоскать рот и не воспринимать никаких вкусовых раздражителей, скажем, в течение минуты, первоначальная вкусовая чувствительность будет полностью восстановлена. В другом виде взаимодействия адаптация к одному вкусу может привести к усилению другого, этот эффект иногда рассматривают как форму контраста. К примеру, адаптация к вкусу сахара заставляет кислоту казаться кислее, чем это было раньше1. Точно так же, адаптировавшись к соленому раствору, мы почувствуем, что обыкновенная водопроводная вода стала как будто более кислой или горькой; а адаптировавшись к сладкому, скажем, что эта же вода определенно стала более горькой2, Обоняние Мы обсудили сенсорные системы, которые дают информацию о предметах и событиях вблизи нас: о движении и местоположении наших тел, об ощущениях нашей кожи, о том, что мы только что с аппетитом 1 См.: Kuznicki J.T, McCutcheon N.B, Cross enhancement of the sour taste of single human taste papillae .// Journal of Experimental Psychology. 1979, 198. P. 68-89. 2 См.; McBurney DM., Shick Т.Н. Taste and water taste of twenty-six compounds for man // Perception and Psychophysics. 1971, 10. P. 249-252. 130 Тема 17. Экспериментальные исследования восприятия съели. Но ведь мы получаем информацию и о том, что находится далеко от нас. Человек обладает тремя главными сенсорными системами, реагирующими на дальние стимулы: это — обоняние, слух и зрение. Обоняние как дистантное чувство Как сенсорная система, реагирующая на дальние стимулы, обоняние жизненно важно для многих видов животных. Обоняние — первейшее средство для поиска пищи, обнаружения хищников и сородичей. Запах играет меньшую роль в человеческом сообществе, в стадах приматов и в птичьих стаях. Предки всех этих созданий покинули кишащую запахами поверхность земли, дабы подняться к деревьям, а в этой древесной среде более значимыми стали другие чувства, особенно зрение. Мы можем проверить это контрастное для многих видов положение дел, используя психофизические методы. Окажется, например, что чувствительность собак к запахам приблизительно в тысячу раз превосходит чувствительность людей1. По сравнению с большинством обитателей поверхности земли, человеческие создания весьма убоги в области обоняния. Но это вовсе не означает, что в человеческой жизни нет места запахам. Они предупреждают нас о надвигающейся опасности (когда, например, мы чувствуем запах газа), они добавляют много приятных моментов тогда, когда мы едим что-нибудь вкусное; запахи — основа всей парфюмерно-дезодорантной индустрии. Согласно некоторым опубликованным данным, они даже помогают продавать чемоданы и подержанные автомобили: пластмассовые портфели, пропитанные искусственным запахом кожи и далеко не новые машины, «спарфюмированные» под только что сошедшие с конвейера, имеют большую рыночную стоимость2. Кроме того, запах играет роль и при узнавании людей. В одном из исследований ученый-психолог попросил нескольких мужчин и женщин в течение одних суток носить футболки, не принимая душ и не пользуясь парфюмерией и дезодорантами. По истечении 24 часов каждая (нестиранная) футболка была упакована в отдельный пакет. Затем всех участников исследования попросили понюхать то, что находилось в трех пакетах, не заглядывая внутрь. В одном из них была его (или ее) футболка, во втором — футболка другого мужчины, в третьем — та, которую носила какая-то другая женщина. Около 75% испытуемых смогли найти свою футболку, опираясь 1 См.: Marshall DA„ Moult on D.G. Olfactory sensitivity to a-ionine in humans and dogs // Chemical Senses. 1981. 6. P. 53-61; Cain W.S. Olfaction // R.C. Atkinson, R.J. Herrnstein, G. Lindzey, R.D. Luce (Eds.). Stevens' handbook of experimental psychology. N. Y.: Wiley, 1988. У. 1. Perception and motivation, rev. ed. P. 409-459. 2 См.: Winter R. The smell book: Scents, sex, and society. Philadelphia: Lippincott, 1976. ГлейтманГ., ФридлундА, РайсбергД. Исследование ощущений 131 лишь на запах, и, кроме того, им удалось правильно определить, мужчина или женщина носили каждую из двух других футболок1. Обоняние как контактное чувство Обоняние — такое чувство, которое дает нам очень важную информацию не только о предметах, находящихся на большом расстоянии, но и близко от нас. Возьмем, к примеру, то, что находится у нас во рту2. Мы можем почувствовать запах котлет, лежащих на нашей тарелке, но также мы можем распробовать их вкус, положив котлету в рот. Этот вкус — как, впрочем, и все вкусы вообще — зависит, в основном, от нашего обоняния. Потому что то, что мы привыкли называть «вкусом» еды, редко является результатом работы лишь вкусовых рецепторов; почти всегда это комбинация вкуса, текстуры, температуры и — что важнее всего — запаха. Когда у нас сильный насморк, нам кажется, что еда совершенно лишена вкуса. И хотя в такие моменты мы все еще различаем четыре основных вкуса — аромат потерян и еда кажется безвкусной. Если исчез запах, мы уже не сможем отличить уксус от тонкого красного вина или яблоко от луковицы. Для гурмана, шеф-повара или дегустатора вин чувствительный нос иногда гораздо более важен, чем чувствительный язык. Слух Слух представляет собой реакцию на такую физическую величину, как давление, и с этой точки зрения является близким родственником кожных чувств. Однако, в отличие от тактильных ощущений, слуховые ощущения информируют нас о том, что давление изменяется благодаря событиям, происходящим на расстоянии многих метров от нас. Звук Что представляют собой слуховые стимулы? В окружающем нас мире все время происходят какие-то физические движения — зверь прошмыгнул в зарослях кустарника или колеблются голосовые связки у вашего соседа. Такое движение активизирует частицы воздуха, находя- 1 См.: RussellM.J. Human olfactory communication // Nature. 1976. 260. P. 520-22; McBurney D.H., Levlne J.M., Cavanaugh Р.Я. Psychophysical and social ratings of human body odor // Personality and Social Psychology Bulletin. 1977. 3. P. 135-138. 2 См.: Rosin P. Human food selection: The interaction of biology, culture, and individual experience // L.M. Barker (Ed.). The psychology of human food selection. Westport, Conn.: AVI Publ. Co., 1982. 132 Тема 17. Экспериментальные исследования восприятия щиеся вокруг двигающегося объекта, а они, в свою очередь, «толкают» другие частицы, которые сообщают этот импульс дальше. Само перемещение частиц очень незначительно (около одной миллионной доли сантиметра) и непродолжительно (частица возвращается в свое исходное положение спустя несколько тысячных секунды), но этого действия достаточно для того, чтобы создать кратковременный импульс, расходящийся во все стороны от движущегося объекта наподобие кругов на воде, в которую бросили камень. Даже если движение длится очень недолго, оно порождает серию колебаний в воздухе. Когда звуковые волны достигают уха, они инициируют дальнейшие микроизменения и в конце концов срабатывают слуховые рецепторы. Затем рецепторы запускают различные нейрональные реакции, которые, в свою очередь, достигают головного мозга и заставляют нас переживать слуховые ощущения. Звуковые волны характеризуются амплитудой и частотой. Амплитуда описывает давление, сообщаемое каждой частицей воздуха своей соседке. Это давление колеблется от минимального до максимального по мере движения звука. Обычно та амплитуда, которую мы стараемся измерить, соответствует максимальному уровню давления, возникающему на гребне звуковой волны. Частота волны описывает частоту возникновения ее гребней. Сколько времени проходит между одним из гребней волны и следующим за ним? Этот интервал называют длиной звуковой волны. Хотя более обобщенно звуковые волны описываются частотой, которая определяется количеством ее гребней (пиков) в секунду. Поскольку скорость звука в какой-либо среде постоянна, частота обратно пропорциональна длине волны (рис. 2). Длина волны Рис. 2. Стимул для слуха Колеблющийся предмет определенным образом толкает окружающие его молекулы; затем эта пульсация распространяется, как круги по воде, в которую бросили камень. Чтобы описать это пример, понадобится измерить давление воздуха в единичной точке пространства. Давление звука колеблется, как показано на этом рисунке. Максимальное давление определяется амплитудой звуковой волны; интервал между пиками давления определяет длину волны Глейтман Г., Фридлунд А., Райсберг Д. Исследование ощущений 133 И амплитуда, и частота суть физические характеристики самой звуковой волны, но они достаточно легко сопоставляются с такими психологическими величинами, как громкость и высота звука. Проще говоря, звук нам будет казаться громче по мере увеличения его амплитуды и выше — по мере возрастания частоты. Амплитуда и громкость звука. Диапазон звуковой амплитуды, воспринимаемой человеком, настолько огромен, что ученые решили измерять эту величину с помощью логарифмической шкалы; поэтому гром- Таблица 1 Громкость различных звуков
Таблица 2 Частоты некоторых музыкальных звуков
134 Тема 17. Экспериментальные исследования восприятия кость звука измеряется в децибелах (табл. 1). В психологическом смысле воспринимаемая громкость возрастает в два раза, если громкость звука увеличивается на 10 дБ1. Частота и высота звука. Частота звука обычно измеряется количеством полных волновых циклов в секунду, или герцами (по имени германского физика Генриха Герца). Частоты, соответствующие различным музыкальным звукам, показаны в табл. 2. Молодые взрослые люди могут слышать звуки частотой от 20 до 20000 Гц, причем максимальная чувствительность наблюдается для звуков из средней части этого диапазона. По мере старения человека его звуковая чувствительность ухудшается, особенно это относится к высоким частотам. Возникновение ближних стимулов У млекопитающих слуховые рецепторы расположены глубоко внутри уха в органе, по форме своей напоминающем улитку (он так и называется — улитка). Чтобы достичь улитки, звуку приходится пробираться нелегким путем. Наружное ухо собирает звуковые волны из воздушной среды и направляет их к барабанной перепонке — упругой мембране, находящейся в конце слухового прохода. Звуковые волны заставляют барабанную перепонку колебаться, а эти колебания, в свою очередь, передаются на пластинку овального отверстия, разделяющую среднее ухо и внутреннее ухо. Операция передачи осуществляется тремя крошечными косточками, имеющими общее название «слуховые косточки». Колебания барабанной перепонки воздействуют на первую косточку, которая, начав двигаться, передает это движение второй косточке, а она — третьей, которая и завершает эту цепочку, сообщая «рисунок» колебания прикрепленной к ней пластинке овального отверстия. Колебание пластинки овального отверстия порождает колебания жидкости, находящейся внутри улитки, вызывая реакцию рецепторов Зачем существует такой окольный путь передачи звука? Звуковые волны приходят к нам по воздуху, и ближний стимул, характерный для слуха, представляет собой кратковременный перепад воздушного давления. Но внутреннее ухо заполнено улиточной жидкостью (перилимфой). Поэтому, чтобы мы что-нибудь услышали, изменения воздушного давления должны вызвать изменения давления жидкости. Известно, что жидкость привести в движение гораздо труднее, чем воздух. Чтобы решить данную проблему, передающие давление волны должны быть каким-то образом усилены на пути к рецепторам; работу, связанную с их усилением, и выполняют различные части слухового органа. Например, 1 См.: Stevens S.S. The measurement of loudness // Journal of the Acoustical Society of America. 1955. 27. P. 15-19. Глейтман Г., Фридлунд А., Райсберг Д. Исследование ощущений 135 слуховые косточки выполняют функцию рычагов, используя рычажную силу для увеличения звукового давления. А барабанная перепонка примерно в двадцать раз больше по площади, чем пластинка овального отверстия, на которую воздействуют слуховые косточки. В результате довольно незначительная сила звуковых волн, воздействующих на барабанную перепонку, превращается в гораздо более внушительную силу, оказывая давление на меньшую по площади пластинку овального отверстия. Преобразования в улитке Почти по всей своей длине улитка разделена на верхнюю и нижнюю части при помощи нескольких структур, включая основную мембрану. Сами слуховые рецепторы называются волосковыми клетками. Эти клетки — в каждом ухе их примерно по 15 тысяч — расположены между основной мембраной и другими мембранами, находящимися выше <...>. Перемещение пластинки овального отверстия вызывает изменение давления в улиточной жидкости, что, в свою очередь, заставляет колебаться основную мембрану. Колеблющаяся основная мембрана деформирует волосяные клетки, и, таким образом, самый непосредственный стимул воздействует на рецепторы. Каким образом движения волосяных клеток вызывают слуховое ощущение? Основной момент в данном вопросе — это восприятие высоты звука, а сенсорные качества высоты зависят от частоты звуковой волны. Участки основной мембраны и высота звука. Согласно локализаци-онной теории высоты, впервые предложенной Германом Гельмгольцем (1821 —1894), различные участки основной мембраны реагируют на звуки разной частоты. А нервная система, в свою очередь, способна определить высоту звука по тому, в какой части основной мембраны колебание было более сильным. Стимуляция волосковых клеток одного конца основной мембраны приводит к ощущению высокого звука, а стимуляция волосковых клеток, находящихся на другом ее конце, вызывает ощущение низкого звука. Постулат Гельмгольца был проверен в серии классических экспериментов Георга фон Бекеши (1899—1972), чьи работы, посвященные изучению слуха, принесли автору Нобелевскую премию в 1961 г. Работая с препаратами улиток людей и животных, Бекеши отделил часть стенки улитки таким образом, что смог наблюдать под микроскопом функционирование основной мембраны в моменты колебания пластинки овального отверстия, которое он раздражал с помощью электрического тока. Он обнаружил, что такая стимуляция приводит к волнообразной вибрации основной мембраны (рис. 3). Когда он стал варьировать частоту колебаний стимула, пики деформации начали возникать в разных областях мембраны, как и предполагал Гельмгольц. При высоких час- 136 Тема 17. Экспериментальные исследования восприятия тотах пики обнаруживались ближе к овальному отверстию, а по мере снижения частоты этот пик смещался все ближе и ближе к верхушке улитки1. Получается, что высокие и низкие частоты воздействуют на разные волосковые клетки, в результате чего стимулируются различные слуховые нервные волокна и, значит, — различные участки головного мозга. Частота звука и частота возбуждения нервных волокон. По мере того как снижается частота стимула, деформируемый участок основной мембраны становится все шире и шире. При частоте ниже 50 Гц волна, вызванная стимулом, деформирует почти равномерно всю поверхность мембраны2. Однако мы способны различать и звуки частотой 20 Гц, так что локализационная теория не описывает картину полностью. По-видимому, нервная система обладает еще каким-то арсеналом средств, помимо поверхности основной мембраны, для различения высоты звука. Высоту звука можно определять с помощью теории частоты, которая основана на разнообразии частот передачи нервных импульсов по Рис. 3. Деформация основной мембраны под действием звука: А — мембрана схематически изображена как простой прямоугольный лист бумаги. На самом деле, конечно же, она гораздо тоньше и свернута в спираль; Б — взаимосвязь между частотой звука и расположением пиков деформации основной мембраны. Пик деформации может располагаться на различных расстояниях от стремечка (третьей косточки, которая приводит в движение мембрану, ударяя по пластинке овального отверстия). Как показывает рисунок, чем выше частота звука, тем ближе к стремечку будет находиться этот пик3 1 См.: Bekeshi G. von. The ear // Scientific American. 1957. 197. P. 66-78. 2 См.: KhannaS.M., Leonard D.G.B.Basilar membrane tuning in the cat cochlea // Science, 1982. 215. P. 305-306; Hudspeth A.J. How the ear's works work // Nature. 1989. 341. P. 397-404. 8 См.: Lindsey P.H., Norman DA. Human information processing. N. Y.: Academic Press, 1977; Coren S., Ward L.M. Sensation and perception. San Diego, Calif.: Harcourt Brace Jovanovich, 1989. ГлейтманГ., ФридлундА., РайсбергД. Исследование ощущений 137 слуховому нерву. Для частот ниже 50 Гц частота звукового стимула может быть преобразована непосредственно в соответствующее количество нервных импульсов в секунду. Затем эта информация поступает в вышележащие нервные центры, которые интерпретируют ее как определенную высоту звука. Современные исследования показывают, что в восприятии высоты звука участвуют оба этих механизма. По-видимому, высокие частоты кодируются в зависимости от местоположения вызванного ими пика на поверхности основной мембраны, а низкие — в зависимости от частоты нервных импульсов. Местоположение пика играет незначительную роль в восприятии частот ниже 500 Гц, а частота импульса почти не влияет на восприятие звуков, частота которых превышает 5000 Гц. В среднем диапазоне, между 1000 и 5000 Гц, действенны оба механизма, и здесь высоты различаются очень точно1, |