Учебное пособие по СМ.07. Учебное пособие по СМ. Учебное пособие для выполнения исследовательских лабораторных работ Издание шестое, Переработанное и дополненное Челябинск
Скачать 6.27 Mb.
|
6 Какое количество олеиновой кислоты следует считать оптимальным для надежной гидрофобизации цемента? 1 Такое количество, при котором отдельные молекулы этой добавки адсорбированы частицами цемента и отталкивают от них молекулы воды. 2 Такое количество, при котором создаются плотные мономолекулярные слои этой добавки на поверхности частиц цемента, гидрофобизирующие цемент. 3 Такое количество, при котором молекулы этой добавки покрывают частицы цемента в несколько слоев и обеспечивают его гидрофобизацию. 4 Такое количество, при котором невозможна гидратация цемента при затворении его водой. 7 Одна капля олеиновой кислоты весит 0,03 г. Сколько капель этой добавки надо добавить к 60 г цемента, чтобы обеспечить ее дозировку равную 0,10% от массы цемента? 1 Одну каплю. 2 Две капли. 3 Три капли. 4 Четыре капли. 8 Какой портландцемент считают гидрофобным? 1 Тот, который не смачивается водой при затворении в течение 45 мин. 2 Тот, у которого начало схватывания наступает не ранее, чем через 45 мин. 3 Тот, на поверхности порошка которого вода остается в виде свободно перемещающихся капель в течение 5 мин и более. 4 Тот, который не гидратируется при затворении его водой. 9 Следует ли учитывать воду, в которой растворен ЛСТ, при подсчете нормальной густоты пластифицированного гипсового теста? 1 Следует, вычитая ее количество из общего объема воды затворения. 2 Следует, добавляя ее количество к общему объему воды затворения. 3 Не следует, т.к. эта добавка пластифицирует тесто и изменяет его нормальную густоту. 4 Не следует, т.к. нормальная густота гипсового теста устанавливается без учета добавки. 10 Как влияет присутствие молекул гидрофилизирующей добавки на сроки схватывания вяжущих? 1 Увеличивают начало схватывания и сокращают конец схватывания теста. 2 Ускоряют сроки схватывания и твердения. 3 Замедляют сроки схватывания и твердения. 4 Не влияет. Лабораторная работа № 9 МЕЛКИЙ ЗАПОЛНИТЕЛЬ ДЛЯ ТЯЖЕЛОГО БЕТОНА Общие сведения Мелкий заполнитель (песок)представляет собой механическую смесь минеральных частиц изерен размером 0,16…5,00 мм, образовавшуюся в результате естественного разрушения массивных горных пород (природные пески) или в результате дробления горных пород (дробленые пески). Природные пески в зависимости от условий образования и залегания могут быть речными, озерными, морскими, горными. Речные, озерные и морские пески имеют округлую форму зерен, горные пески содержат остроугольные зерна с шероховатой поверхностью, что обеспечивает их лучшее сцепление с цементным камнем. Однако горные пески обычно больше загрязнены вредными примесями. Форма зерен дробленых песков остроугольная, поверхность шероховатая, но их стоимость выше, чем у природных песков. По минеральному составу различаю кварцевые, полевошпатные, карбонатные пески. Для приготовления бетонов чаще применяют кварцевые пески. Пески могут быть обогащенными, т.е. с улучшенными качественными показателями, в первую очередь, зерновым составом, что достигается применением специального оборудования. Природный и дробленый пески могут быть фракционированными, т.е. разделенными на две или более фракций. В бетоне песок служит материалом для создания жесткого скелета, который повышает плотность и прочность бетона. Кроме того, песок снижает усадку и ползучесть бетона и бетонной смеси. В рыхлой смеси заполнителей песок заполняет пустоты между зернами крупного заполнителя, в то же время, все пустоты между зернами песка должны быть заполнены цементным тестом. Если в бетонной смеси цементным тестом заполнить только пустоты между зернами песка, то получится малоподвижная смесь, которую практически невозможно уложить в форму. Кроме того, не будет обеспечен плотный контакт между зернами песка, что приведет к значительному снижению прочности бетона. Для устранения этого недостатка необходимо раздвинуть зерна и окружить их оболочкой из цементного теста, которая обеспечить необходимую подвижность смеси и скрепит рот твердении цемента зерна песка в единый монолит. С целью сокращения расхода цемента (уменьшения объема цементного теста) следует применять пески с малой пустотностью и наименьшей суммарной поверхностью частиц. Наиболее подходящими являются крупные пески, содержащие оптимальное количество средних и мелких фракций. С этих позиций установлены технические требования к зерновому составу песков, пригодных для получения тяжелого бетона. Для получения тяжелых бетонов используют природные пески с плотностью зерен 1800…2800 кг/м3 оптимального зернового состава, при котором пустотность песка е превышает 38 %. Прочность песка не регламентируется, однако следует учитывать, что на песке, содержащем зерна низкой прочности, высокомарочный бетон получить нельзя. Стандартами ограничивается содержание пылевидных, глинистых и илистых частиц в песке, которые повышают водопотребность песка, снижают прочность бетона. В соответствии с ГОСТ 8736 содержание этих примесей, определяемые отмучиванием, не должно превышать 3 % по массе в природном песке, 2 % − в обогащенном песке и 5 % − в дробленом песке. Содержание глины в комках должно быть не более 0,5 % по массе в природном песке и не более 0,25 % − в обогащенном песке. Цель работы Изучить основные свойства песка и исследовать возможность и эффективность их использования для приготовления обычного тяжелого бетона. Порядок выполнения работы Каждое звено студентов самостоятельно исследует предоставленную ему отдельную пробу песка и устанавливает возможность использования его для приготовления обычного тяжелого бетона. При этом пробы песка готовятся заранее для четырех звеньев таким образом, чтобы все они имели различный зерновой состав (либо используются пески разных месторождений). При этом с каждой пробой проводятся следующие испытания: − определяется насыпная плотность песка и подсчитывается его пустотность; − изучается зерновой состав с определением модуля крупности МК и построением кривой просеивания; − определяется удельная поверхность песка; − определяется водопотребность песка. Методы испытаний 1 Определение насыпной плотности песка и подсчет его пустотности Среднюю сухую пробу песка массой от 5 до 10 кг просеивают сквозь сито с круглыми отверстиями диаметром 5 мм. Затем песок, который прошел сквозь сито, насыпают с высоты 10 см в предварительно взвешенный мерный цилиндр емкостью 1 л до образования над верхом цилиндра конуса. Конус без уплотнения песка срезают вровень с краями сосуда металлической линейкой, после чего сосуд взвешивают и вычисляют насыпную плотность по формуле ρ нас = (m2 - m1)/V, (15) где ρ нас – насыпная плотность, кг\м3; m2 и m1 – массы мерного сосуда соответственно с песком и без песка, кг; V – объем цилиндра, м3. Определение производят дважды, при этом каждый раз берут новую порцию песка. Показатель насыпной плотности песка подсчитывают как среднее арифметическое двух определений. Песок, предназначенный для изготовления бетона класса В 15 и выше (М 200 и выше) или для бетона, используемого для изготовления конструкций, подвергающихся замораживанию и оттаиванию в насыщенном водой состоянии, должен иметь насыпную плотность не менее 1550 кг/м3, в остальных случаях – не ниже 1400 кг/м3. Пустотность песка подсчитывают в процентах с погрешностью 0,1 % по установленному значению насыпной плотности и значению плотности зерен песка (указывается преподавателем) по формуле V пуст = (1 - ρ нас /ρ п) 100 %, (16) где V пуст − пустотность песка, %; ρ п − плотность зерен песка, кг/м3. 2 Определение зернового состава и модуля крупности песка Высушенную до постоянной массы пробу песка (2 кг) просеивают сквозь сита с круглыми отверстиями диаметром 10 и 5 мм для выявления засоренности песка зернами гравия. Остатки на ситах взвешивают и вычисляют содержание в песке фракций с размерами 5...10 мм (Гр 5) и свыше 10 мм (Гр 10) в процентах по массе. Применение песка для получения тяжелого бетона возможно в том случае, если остатки на ситах будут не более 5 и 0,5 % соответственно. Из пробы песка, прошедшей сквозь сито с размером ячейки 5 мм, отбирают навеску массой 1000 г и просеивают сквозь набор сит с круглыми отверстиями диаметром 2,5 мм и с сеткой с размером ячеек 1,25; 0,63; 0,315 и 0,16 мм. Окончанием просеивания служит отсутствие на листе бумаги зерен песка при контрольном просеивании каждого сита. Частные остатки на каждом сите определяют по формуле а i = m i /m .100 %, (17) где а i – частный остаток на сите, %; m i – масса остатка на данном сите, г; m – масса просеиваемой пробы, г. Полные остатки на каждом сите в процентах А i определяют как сумму частных остатков на данном сите и на всех ситах с большим размером отверстий. По полным остаткам на каждом сите в процентах строится график зернового состава песка и сравнивается с областью зерновых составов песков, пригодных для приготовления тяжелых бетонов различного назначения (рисунок 31). Полные остатки А;, % 0,16 0,63 1,25 2,5 5 Размеры контрольных сит, мм Рисунок 31 − График зернового состава песка 1 − допускаемая нижняя граница крупности песка (МК = 1,5); 2 − рекомендуемая нижняя граница крупности песка (МК = 2,0) для бетонов класса В15 и выше, а также для бетонов безнапорных труб; 3 − нижняя граница крупности песка (МК = 2,5) для бетонов класса В25 и выше, а также для бетонов напорных железобетонных труб; 4 − допускаемая верхняя граница крупности песков (МК = З,25) Модуль крупности песка подсчитывается с погрешностью 0,01 по формуле МК = (А 2,5 + А 1,25 + А 0,63 + А 0,315 + А 0,16)/100 %, (18) где А 2,5, А 1,25, А 0,63, А 0,315 и А 0,16 - полные остатки па соответствующих контрольных ситах, %. Результаты определений записываются в таблицу и изображаются графически в виде кривой просеивания. Согласно ГОСТ 26633, если кривая просеивания испытываемого песка не выходит за пределы области, ограниченной стандартом, песок пригоден для приготовления бетона. В соответствии с модулем крупности и остатком на сите № 0,63 пески делят на группы, представленные в таблице 11. Таблица 27 – Классификация песков по крупности
Согласно таблицы 11, устанавливают группу исследуемого песка. Кроме этого, определяется возможность применения исследуемого песка для бетонов тех или иных марок исходя из того, что для тяжелых и мелкозернистых бетонов используется песок с модулем крупности 1,5...3,25. Причем для бетонов прочностью 20 МПа и выше МК должен быть не менее 2, а прочностью 35 МПа и выше − не менее 2,5. 3 Определение удельной поверхности песка Из пробы исследуемого песка, просеянной сквозь сито с круглыми отверстиями диаметром 5 мм, берут навеску около 300 г и высушивают до постоянной массы. Удельную поверхность песка определяют при помощи пневматического поверхностемера (рисунок 19). В гильзу 1 на перфорированную бронзовую решетку кладут кружок фильтровальной бумаги, затем всыпают часть исследуемого песка. Гильзу при этом слегка постукивают о стол и тем самым уплотняют песок. Сверху на уплотненный песок укладывают второй кружок фильтровальной бумаги и вставляют плунжер так, чтобы он своими упорами дошел до верхнего края гильзы, слегка допрессовывая песок. Гильза соединена с наполненным водой аспиратором 4, при этом краны 3, 5 и 6 должны быть закрыты. Затем плунжер из гильзы вынимают и открывают сливной кран 3 аспиратора. Когда на водяном манометре 7 установится постоянное разрежение Н, под струю воды подставляют колбу 2 и одновременно включают секундомер. Истечение жидкости продолжается до тех пор, пока ее уровень, снижаясь, не дойдет до метки на аспираторе. В этот момент отмечают величину разрежения по манометру (в см водяного столба), закрывают сливной кран 3 и выключают секундомер, фиксируя продолжительность опыта τ в с. Затем определяют количество воды в колбе в см3 при помощи мерного цилиндра. Температуру во время опыта контролируют термометром. Рисунок 32 − Пневматический поверхностемер После окончания опыта песок из гильзы высыпают и определяют массу песка в гильзе m с погрешностью 0,1 г. Определение насыпной плотности песка в уплотненном состоянии ρˉ нас определяют по формуле ρˉ нас = m/V 1, (19) где V 1 – объем гильзы, см3. Далее по значениям установленной насыпной плотности ρˉ нас и плотности зерен песка ρ п подсчитывают его пустотность П в долях единицы в уплотненном состоянии П = 1 - ρˉ нас/ρ п . (20) На основании полученных результатов вычисляют удельную поверхность песка S уд по формуле 14 К _______ ___ _________ S уд = ----- · √ Н.τ/ V в · √1/η · √П3/(1 – П)2 , (21) ρ п где К – константа прибора; V в − объем воздуха, прошедшего в процессе опыта через слой песка, равный объему воды в колбе, см3; Определение удельной поверхности производят два раза, каждый раз применяя новую порцию песка. Величину удельной поверхности вычисляют с погрешностью 1 см2/г как среднее арифметическое двух определений. В таблицах 28 и 29 представлены результаты определения вязкости и пустотности песка для использования данных значений при расчете удельной поверхности песка. Таблица 28 − Зависимость вязкости воздуха от температуры
Таблица 29 − Пустотность песка
4 Определение водопотребности песка Из портландцемента с известной нормальной густотой НГ и исследуемого песка готовят растворную смесь состава 1:2 и, добавляя в него воды, подбирают водоцементное отношение В/Ц, при котором расплыв конуса их этой растворной смеси на стандартном встряхивающем столике будет равен 170 мм. Для этого 600 г песка перемешивают с 300 г цемента в течение 1 мин всухую и 5 мин с водой. Расплыв конуса определяют по методике, описанной в лабораторной работе № 7. Водопотребность песка В п вычисляется по формуле В п = 0,5 (В/Ц – НГ), (22) где В/Ц – водоцементное отношение растворной смеси, определенное в результате опыта. По результатам испытаний, выполненных всеми звеньями группы студентов для песков различной крупности, строится графическая зависимость между показателями удельной поверхности и водопотребности песка. Выводы по работе По результатам исследований отдельные звенья студентов классифицируют изучаемые пески по крупности и делают заключение о возможности их использования в качестве мелкого заполнителя для приготовления тяжелого бетона различного назначения. При этом следует учитывать данные по зерновому составу, модулю крупности и насыпной плотности и их соответствия техническим требованиям. Строится и анализируется всей подгруппой студентов графическая зависимость водопотребности песка от его удельной поверхности. Отмечается пески с наименьшими показателями пустотности и удельной поверхности. Контрольные вопросы |