Учебное пособие Курск 2016
Скачать 0.64 Mb.
|
Рисунок 27. Схема технической системы передачи информации. Работу такой схемы можно пояснить на знакомом всем процессе разговора по телефону. Источником информации является говорящий человек. Кодирующим устройством – микрофон телефонной трубки, с помощью которого звуковые волны (речь) преобразуются в электрические сигналы. Каналом связи является телефонная сеть (провода, коммутаторы телефонных узлов, через которые проходит сигнал). Декодирующим устройством является телефонная трубка (наушник) слушающего человека – приемника информации. Здесь пришедший электрический сигнал превращается в звук. Связь, при которой передача производится в форме непрерывного электрического сигнала, называется аналоговой связью. Под кодированием понимается любое преобразование информации, идущей от источника, в форму, пригодную для ее передачи по каналу связи. На заре эры радиосвязи применялся код азбуки Морзе. Текст преобразовывался в последовательность точек и тире, (коротких и длинных сигналов) и передавался в эфир. Принимавший на слух такую передачу человек должен был суметь декодировать код обратно в текст. Еще раньше азбука Морзе использовалась в телеграфной связи. Передача информации с помощью азбуки Морзе – это пример дискретной связи. В настоящее время широко используется цифровая связь, когда передаваемая информация кодируется в двоичную форму (0 и 1 – двоичные цифры), а затем декодируется в текст, зображение, звук. Цифровая связь, очевидно, тоже является дискретной. Термином «шум» называют разного рода помехи, искажающие передаваемый сигнал и приводящие к потере информации. Такие помехи прежде всего возникают по техническим причинам: плохое качество линий связи, незащищенность друг от друга различных потоков информации, передаваемых по одним и тем же каналам. Часто, беседуя по телефону, мы слышим шум, треск, мешающие понять собеседника, или на наш разговор накладывается разговор совсем других людей. В таких случаях необходима защита от шума В первую очередь применяются технические способы защиты каналов связи от воздействия шумов. Такие способы бывают самые разные, иногда – простые, иногда – очень сложные. Например, использование экранированного кабеля вместо «голого» провода; применение разного рода фильтров, отделяющих полезный сигнал от шума. Клодом Шенноном была разработана специальная теория кодирования, дающая методы борьбы с шумом. Одна из важных идей этой теории состоит в том, что передаваемый по линии связи код должен быть избыточным. За счет этого потеря какой-то части информации при передаче может быть компенсирована. Например, если при разговоре по телефону вас плохо слышно, то, повторяя каждое слово дважды, вы имеете больше шансов на то, что собеседник поймет вас правильно. Однако нельзя делать избыточность слишком большой. Это приведет к задержкам и удорожанию связи. Теория кодирования К.Шеннона как раз и позволяет получить такой код, который будет оптимальным. При этом избыточность передаваемой информации будет минимально возможной, а достоверность принятой информации – максимальной. В современных системах цифровой связи часто применяется следующий прием борьбы с потерей информации при передаче. Все сообщение разбивается на порции – блоки. Для каждого блока вычисляется контрольная сумма (сумма двоичных цифр), которая передается вместе с данным блоком. В месте приема заново вычисляется контрольная сумма принятого блока, и если она не совпадает с первоначальной, то передача данного блока повторяется. Так будет происходить до тех пор, пока исходная и конечная контрольные суммы не совпадут. Каналы передачи информации Каналы передачи информации предназначены для передачи сообщений от источника к потребителю. При заданных характеристиках линий связи основными задачами являются анализ и синтез операторов преобразования сигналов на передающей и приемной стороне, которые определяются видом канала передачи информации. Виды каналов передачи информации. По назначению каналы передачи информации подразделяются на телефонные, телеметрические, передачи цифровых данных и др. В зависимости от характера линий связи различают каналы радиосвязи и каналы проводной связи: кабельные, волноводные, волоконно-оптические и др. Наилучшими характеристиками обладают кабельные линии связи, работающие в диапазоне частот от сотен килогерц до десятков мегагерц. Каналы радиосвязи различных частотных диапазонов во многих случаях позволяют организовать дальнюю связь без промежуточных станций и поэтому являются более экономичными по сравнению с кабельными. Наибольшее распространение в многоканальной телефонной и телевизионной связи получили наземные радиорелейные линии связи, работающие в диапазоне частот от десятков мегагерц до десятков гигагерц Спутниковые линии связи по принципу работы представляют собой разновидность радиорелейных линий с ретрансляторами, установленными на искусственных спутниках Земли, что обеспечивает дальность связи около 10000 км для каждого спутника. Диапазон частот спутниковой связи в настоящее время расширен до 250 ГГц, что обеспечивает повышение качественных показателей систем связи. Переход на более высокочастотные диапазоны позволяет получить остронаправленное излучение при малых размерах антенн, уменьшить влияние атмосферных и промышленных помех, организовать большое число широкополосных каналов связи. По характеру сигналов на входе и выходе каналов различают дискретные, непрерывные и дискретно-непрерывные каналы. Волоконно-оптические каналы передачи информации. Волоконно-оптические системы связи и передачи информации широко применяются в технике дальней связи, кабельном телевидении и компьютерных сетях. Волоконно-оптические каналы передачи информации содержат все элементы, характерные для систем связи, представленные схемой рис. 28, и являются примером реализации каналов связи и передачи информации на основе высоких технологий. Достоинствами оптических кабелей по сравнению с электрическими являются возможность передачи большого потока информации, малое ослабление сигнала и независимость его от частоты в широком диапазоне частот, высокая защищенность от внешних электоромагнитных помех, малые габаритные размеры и масса (масса оптических кабелей в 10 раз меньше электрических). Оптические кабели не требуют дорогостоящих материалов и изготавливаются, как правило, из стекла или полимеров. В оптических системах передачи информации применяются в основном те же принципы образования многоканальной связи, что и в обычных системах передачи по электрическим кабелям, а именно частотного и временного разделения каналов. В первом случае сигналы различаются по частоте и имеют аналоговую форму передаваемого сообщения. Во втором случае каналы мультиплексируются во времени, и импульсы имеют дискретный вид. Это соответствует цифровой передаче с импульсно-кодовой модуляцией (ИКМ). Во всех случаях оптической передачи информации электрический сигнал, формируемый частотным или временным методом, модулирует оптическую несущую и затем передается по оптическому кабелю. Рисунок 28. Структурная схема волоконно-оптического канала передачи информации. Возможны два вида модуляции: внутренняя и внешняя. При внутренней модуляции электрический сигнал непосредственно воздействует на излучение источника (лазера), обеспечивая соответствующую интенсивность и форму сигнала. При внешней модуляции используется специальное модулирующее устройство, с помощью которого осуществляется воздействие передаваемого сигнала на уже сформированный световой луч. Для систем с полупроводниковыми лазерами применяется, как правило, внутренняя модуляция. В основном используется метод модуляции интенсивности оптической несущей, при котором от амплитуды электрического сигнала зависит мощность излучения, подаваемого в кабель, и закон изменения мощности оптического излучения повторяет закон изменения модулирующего сигнала. Частотная и фазовая модуляция не могут быть применены непосредственно, поскольку из-за шумового характера излучения полупроводниковых источников, работающих в оптическом диапазоне, сигнал не является строго синусоидальным. Тем не менее, эти виды модуляции в принципе могут быть реализованы путем изменения соответствующих параметров сигнала, модулирующего интенсивность излучения. Выбор метода модуляции интенсивности излучения для оптических систем обусловлен также простотой реализации передачи и приема сигнала. При передаче используется полупроводниковый лазер, который обеспечивает непосредственное преобразование электрического сигнала в оптический, сохраняя его форму. Для повышения эффективности ввода оптического сигнала в кабель (снижения потерь) в схеме рис. 28 используются элементы согласования. Поступающий из кабеля оптический сигнал преобразуется в оптическом приемнике в электрический сигнал, который поступает для дальнейших преобразований в электронную схему. Прием осуществляется фотодетектором, выходной ток которого пропорционален входной мощности. Следовательно, подавая оптический сигнал непосредственно на фоточувствительную поверхность фотодетектора, можно преобразовать его в электрический сигнал сохраняя его форму. Оптические системы передачи являются, как правило, цифровыми. Это обусловлено тем, что передача аналоговых сигналов требует высокой степени линейности промежуточных усилителей, которую трудно обеспечить в оптических системах. Особенность оптических цифровых методов состоит в том, что передача ведется только однополярными импульсами электрического сигнала, модулирующего оптическую несущую. Последнее объясняется тем, что модулируется не амплитуда, а мощность оптического излучения. Таким образом, наиболее распространенной волоконно-оптической системой связи является в настоящее время цифровая система с временным разделением каналов и ИКМ интенсивности излучения источника. Двухсторонняя связь осуществляется по двум волоконным световодам. По одному световоду передаются сигналы в направлении А-Б, по другому в направлении Б-А. В обоих направлениях сигналы передаются на одной и той же оптический несущей (например, имеющей частоту v=2,3 ×1014 Гц, соответствующую длине волны ?=1,3 мкм). Источники и приемники излучения должны быть взаимно согласованными с кабелем. Для этого необходимо, чтобы: длина волны излучения находилась в области малого затухания кабеля; диаграмма направленности излучения источника соответствовала апертурному углу выбранного световода; фотоприемник имел достаточную чувствительность; соблюдалось соответствие между скоростью передачи информации и шириной спектра излучения источника. Следует иметь в виду, что в связи с сильно выраженными дисперсионными свойствами оптического кабеля приходящие на фотодетектор импульсы могут перекрываться, поэтому требуется использовать специальные алгоритмы оптимального приёма. Для подавления межсимвольной интерференции применяют фильтры (выравниватели), которые располагают после фотодетектора и усилителя. Последующую часть электрической схемы оптимизируют для приема импульсов без межсимвольной интерференции. Расширение импульсов при передачи их по оптическому кабелю эквивалентно их прохождению через четырехполюстник с частотной характеристикой, спадающей в области высоких частот. Для ее выравнивания применяют фильтры, значение коэффициента передачи которых с частотой возрастает, что приводит также к увеличению уровня шума. Поэтому характеристику выравнивателя подбирают как компромисс между снижением межсимвольной помехи и возрастанием уровня шумов (связанных с фотодетектированием и усилением) по минимальному уровню требуемой световой мощности на входе фотодетектора. Весьма перспективно применение спектрального уплотнения, при котором в волоконный световод вводится одновременно излучение от нескольких источников, работающих на различных оптических частотах, а на приемной стороне с помощью оптических фильтров происходит разделение сигналов. За счет спектрального уплотнения возможна передача значительно большего объема информации по одному волоконному световоду и организация по нему двухсторонней связи. Информация и вероятность. Пропускная способность канала связи. Равновероятные события - это события, которые не имеют преимущества друг перед другом, т.е. вероятность их появления не зависит от условий проведе-ния эксперимента (выпадение орла или решки, выпадение любой из шести граней кубика). Неравновероятные события - это события, вероятность появления которых зависит от условий проведения эксперимента (зависимость прогноза погода от времени года). ВЕРОЯТНОСТЬ какого - либо случайного события P определяется как от-ношение числа случаев К, соответствующих наступлению ожидаемого события, к общему числу возможных случаев N, если случаи равновозможны (равновероятны): P = K / N Пропускная способность — метрическая характеристика, показывающая соотношение количества проходящих единиц (информации, предметов, объёма) в единицу времени через канал, систему, узел. Пропускная способность канала Скорость передачи информации зависит в значительной степени от скорости её создания, способов кодирования и декодирования. Наибольшая возможная в данном канале скорость передачи информации называется его пропускной способностью. Пропускная способность канала, по определению, есть скорость передачи информации при использовании «наилучших» для данного канала источника, кодера и декодера, поэтому она характеризует только канал. Пропускная способность дискретного (цифрового) канала без помех C = log(m) бит/символ где m — основание кода сигнала, используемого в канале. Скорость передачи информации в дискретном канале без шумов равна его пропускной способности, когда символы в канале независимы, а все m букв алфавита равновероятны (используются одинаково часто). Введение понятий энтропии, количества информации, скорости выдачи информации источником, избыточности позволяют характеризовать свойства информационных систем. Однако для сравнения информационных систем только такого описания недостаточно. Обычно нас интересует не только передача данного количества информации, но передача его в возможно более короткий срок; не только хранение определенного количества информации, но хранение с помощью минимальной по объему аппаратуры и т.п. Пусть количество информации, которое передается по каналу связи за время Т равно Если передача сообщения длится Т единиц времени, то скорость передачи информации составит . Это количество информации, приходящееся в среднем на одно сообщение. Если в секунду передается n сообщений, то скорость передачи будет составлять Пропускная способность канала есть максимально достижимая для данного канала скорость передачи информации: Или максимальное количество информации, передаваемое за единицу времени: Скорость передачи может быть технической или информационной. Под технической скоростью VT, называемой также скоростью манипуляции, подразумевается число элементарных сигналов (символов), передаваемых в единицу времени бод. Информационная скорость или скорость передачи информации, определяется средним количеством информации, которое передается в единицу времени и измеряется (бит/сек). R=nH. Для равновероятных сообщений составленных из равновероятных взаимно независимых символов В случае если символы не равновероятны В случае если символы имеют разную длительность Выражение для пропускной способности отличается тем, что характеризуется максимальной энтропией бит/сек Для двоичного кода бит/сек Пропускная способность является важнейшей характеристикой каналов связи. Возникает вопрос: какова должна быть пропускная способность канала, чтобы информация от источника X к приемнику Y поступала без задержек? Ответ на этот вопрос дает 1ая теорема Шеннона. Теорема Шеннона. Теорема Шеннона, одна из основных теорем теории информации о передаче сигналов по каналам связи при наличии помех, приводящих к искажениям. Пусть надлежит передать последовательность символов, появляющихся с определёнными вероятностями, причём имеется некоторая вероятность того, что передаваемый символ в процессе передачи будет искажён. Простейший способ, позволяющий надёжно восстановить исходную последовательность по получаемой, состоит в том, чтобы каждый передаваемый символ повторять большое число (N) раз. Однако это приведёт к уменьшению скорости передачи в N раз, т. е. сделает её близкой к нулю. Ш. т. утверждает, что можно указать такое, зависящее только от рассматриваемых вероятностей положительное число v, что при сколько угодно малом существуют способы передачи со скоростью v'(v' < v), сколь угодно близкой к v, дающие возможность восстанавливать исходную последовательность с вероятностью ошибки, меньшей e. В то же время при скорости передачи v', большей v, это уже невозможно. Упомянутые способы передачи используют надлежащие «помехоустойчивые» коды. Критическая скорость v определяется из соотношения Hv = C, где Н — энтропия источника на символ, С — ёмкость канала в двоичных единицах в секунду. |