Главная страница

Найду. Беспокойный мозг (2021). Ума Найду раскрывает множество секретов, в каждой главе рассказывая о вредных и полезных элементах повседневных продуктов, которые усугубляют наше психоэмоциональное состояние


Скачать 7.83 Mb.
НазваниеУма Найду раскрывает множество секретов, в каждой главе рассказывая о вредных и полезных элементах повседневных продуктов, которые усугубляют наше психоэмоциональное состояние
Дата20.10.2022
Размер7.83 Mb.
Формат файлаpdf
Имя файлаНайду. Беспокойный мозг (2021).pdf
ТипДокументы
#744733
страница28 из 33
1   ...   25   26   27   28   29   30   31   32   33
ГЛАВА 6. Деменция и спутанность сознания
1. Farzi A, Fröhlich EE, Holzer P. Gut microbiota and the neuroendocrine system. Neurotherapeutics. 2018; 15(1): 5–22. doi: 10.1007/
s13311-017-0600-5.
2. Alkasir R, Li J, Li X, Jin M, Zhu B. Human gut microbiota: the links with dementia development. Protein and Cell. 2017; 8(2): 90–102. doi:
10.1007/s13238-016-0338-6.
3. Tully K, Bolshakov VY. Emotional enhancement of memory: how norepinephrine enables synaptic plasticity. Molecular Brain. 2010; 3: 15. doi: 10.1186/1756-6606-3-15.
4. Ghacibeh GA, Shenker JI, Shenal B, Uthman BM, Heilman KM.
The influence of vagus nerve stimulation on memory. Cognitive
and Behavioral Neurology. 2006; 19(3): 119–122. doi: 10.1097/
01.wnn.0000213908.34278.7d.

Список литературы
405 5. Cawthon CR, de La Serre CB. Gut bacteria interaction with vagal afferents. Brain Research. 2018; 1693(Pt B): 134–139. doi: 10.1016/j.
brainres.2018.01.012.
6. Scheperjans F, Aho V, Pereira PA, et al. Gut microbiota are related to Parkinson’s disease and clinical phenotype. Movement Disorders.
2015; 30(3): 350–358.
7. Evidence suggests rosacea may be linked to Parkinson’s and Alzheimer’s disease. Nursing Standard. 2016; 30(39): 14. doi: 10.7748/ns.30.39.14.s16.
8. Parodi A, Paolino S, Greco A, et al. Small intestinal bacterial overgrowth in rosacea: clinical effectiveness of its eradication. Clinical
Gastroenterology Hepatology. 2008; 6(7): 759–764. doi: 10.1016/j.
cgh.2008.02.054.
9. Alkasir R, Li J, Li X, Jin M, Zhu B. Human gut microbiota: the links with dementia development. Protein and Cell. 2017; 8(2): 90–102. doi:
10.1007/s13238-016-0338-6.
10. Yamashita T, Kasahara K, Emoto T, et al. Intestinal immunity and gut microbiota as therapeutic targets for preventing atherosclerotic cardiovascular diseases. Circulation Journal. 2015; 79(9): 1882–1890. doi: 10.1253/circj.CJ-15-0526.
11. Morris MJ, Beilharz JE, Maniam J, Reichelt AC, Westbrook RF.
Why is obesity such a problem in the 21st century? The intersection of palatable food, cues and reward pathways, stress, and cognition.
Neuroscience and Biobehavorial Reviews. 2015; 58: 36–45. doi: 10.1016/j.
neubiorev.2014.12.002.
12.
Morin JP, Rodríguez-Durán LF, Guzman-Ramos K, et al.
Palatable hyper-caloric foods impact on neuronal plasticity.
Frontiers in Behavioral Neuroscience. 2017; 11: 19. doi: 10.3389/ fnbeh.2017.00019.
13. Woollett K, Maguire EA. Acquiring “the Knowledge” of London’s layout drives structural brain changes. Current Biology. 2011; 21(24): 2109-
2114. doi:10.1016/j.cub.2011.11.018; Noble KG, Grieve SM, Korgaonkar
MS, et al. Hippocampal volume varies with educational attainment across the life-span. Frontiers in Human Neuroscience. 2012; 6: 307. doi:
10.3389/fnhum.2012. 00307.
14. Stevenson RJ, Francis HM. The hippocampus and the regulation of human food intake. Psychological Bulletin. 2017; 143(10): 1011–1032. doi: 10.1037/bul0000109.
15.
Gomez-Pinilla F. The combined effects of exercise and foods in preventing neurological and cognitive disorders. Preventive Medicine.
2011; 52(suppl1): S75–80.
16. Mcnay EC, Ong CT, Mccrimmon RJ, Cresswell J, Bogan JS, Sherwin RS.
Hippocampal memory processes are modulated by insulin and high- fat-induced insulin resistance. Neurobiology of Learning and Memory.
2010; 93(4): 546–553. doi: 10.1016/j.nlm.2010.02.002.
17. Wu A, Ying Z, Gomez-Pinilla F. The interplay between oxidative stress and brain-derived neurotrophic factor modulates the outcome of a saturated fat diet on synaptic plasticity and cognition. European
Journal of Neuroscience. 2004; 19(7): 1699–1707. doi: 10.1111/ j.1460-9568.2004.03246.x.

Ума Найду
406 18. Lowe CJ, Reichelt AC, Hall PA. The prefrontal cortex and obesity: a health neuroscience perspective. Trends in Cognitive Sciences. 2019;
23(4): 349–361. doi: 10.1016/j.tics.2019.01.005.
19. Hsu TM, Kanoski SE. Blood-brain barrier disruption: mechanistic links between Western diet consumption and dementia. Frontiers in Aging
Neuroscience. 2014; 6: 88. doi: 10.3389/ fnagi.2014.00088.
20. Pistell PJ, Morrison CD, Gupta S, et al. Cognitive impairment following high fat diet consumption is associated with brain inflammation.
Journal of Neuroimmunology. 2010; 219 (1–2): 25–32. doi: 10.1016/j.
jneuroim.2009.11.010.
21. Naneix F, Tantot F, Glangetas C, et al. Impact of early consumption of high-fat diet on the mesolimbic dopaminergic system. eNeuro. 2017;
4(3). doi: 10.1523/ENEURO.0120-17.2017; Valladolid-Acebes I, Merino
B, Principato A, et al. High-fat diets induce changes in hippocampal glutamate metabolism and neurotransmission. American Journal
of Physiology, Endocrinology and Metabolism. 2012; 302(4): E396–402. doi: 10.1152/ajpendo.00343.2011.
22. Boitard C, Etchamendy N, Sauvant J, et al. Juvenile, but not adult exposure to high-Fat diet impairs relational memory and hippocampal neurogenesis in mice. Hippocampus. 2012; 22(11): 2095–2100. doi:
10.1002/hipo.22032.
23. Nilsson LG, Nilsson E. Overweight and cognition. Scandinavian Journal of
Psychology. 2009; 50(6): 660–667. doi: 10.1111/j.1467-9450.2009.00777.x.
24. Loprinzi PD, Ponce P, Zou L, Li H. The counteracting effects of exercise on high-fat diet-induced memory impairment: a systematic review.
Brain Sciences. 2019; 9(6).
25. Losurdo G, Principi M, Iannone A, et al. Extra-intestinal manifestations of non-celiac gluten sensitivity: an expanding paradigm. World Journal
of Gastroenterology. 2018; 24(14): 1521–1530. doi: 10.3748/wjg.v24.i14.1521.
26. Rashtak S, Murray JA. Celiac disease in the elderly. Gastroenterology Clinics
of North America. 2009; 38(3) :433–446.doi: 10.1016/j.gtc.2009.06.005.
27. Lichtwark IT, Newnham ED, Robinson SR, et al. Cognitive impairment in coeliac disease improves on a gluten-free diet and correlates with histological and serological indices of disease severity. Alimentary
Pharmacology and Therapeutics. 2014; 40(2): 160–170. doi: 10.1111/apt.
12809; Casella S, Zanini B, Lanzarotto F, et al. Cognitive performance is impaired in coeliac patients on gluten free diet: a case-control study in patients older than 65 years of age. Digestive and Liver Disease. 2012;
44(9): 729–735. doi: 10.1016/j.dld.2012.03.008.
28. Witte AV, Fobker M, Gellner R, Knecht S, Floel A. Caloric restriction improves memory in elderly humans. Proceedings of the National
Academy of Sciences of the United States of America. 2009; 106(4): 1255–
1260. doi: 10.1073/pnas.0808587106.
29. Martin B, Mattson MP, Maudsley S. Caloric restriction and intermittent fasting: two potential diets for successful brain aging. Ageing Research
Reviews. 2006; 5(3): 332–353. doi: 10.1016/j.arr.2006.04.002; Wang
J, Ho L, Qin W, et al. Caloric restriction attenuates beta-amyloid neuropathology in a mouse model of Alzheimer’s disease. FASEB Journal.
2005; 19(6): 659–661. doi: 10.1096/fj.04-3182fje; Srivastava S, Haigis MC.

Список литературы
407
Role of sirtuins and calorie restriction in neuroprotection: implications in Alzheimer’s and Parkinson’s diseases. Current Pharmaceutical Design.
2011; 17(31): 3418–3433. doi: 10.2174/138161211798072526.
30. Leclerc E, Trevizol AP, Grigolon RB, et al. The effect of caloric restriction on working memory in healthy non-obese adults. CNS Spectrums. 2019:
1–7. doi: 10.1017/S1092852918001566.
31. Green MW, Rogers PJ. Impairments in working memory associated with spontaneous dieting behaviour. Psychological Medicine. 1998;
28(5): 1063–1070. doi: 10.1017/s0033291798007016; Kemps E,
Tiggemann M, Marshall K. Relationship between dieting to lose weight and the functioning of the central executive. Appetite. 2005; 45(3):
287–294. doi: 10.1016/j.appet.2005.07.002.
32.
Дополнительную информацию об изофлавонах сои ищите в разделе «Soy Isoflavones» на официальном сайте Университета штата Орегон: https://lpi.oregonstate.edu/mic/ dietaryfactors/
phytochemicals/soy-isoflavones. Accessed November 22, 2016 (на ан- глийском языке).
33. Cheng PF, Chen JJ, Zhou XY, et al. Do soy isoflavones improve cognitive function in postmenopausal women? A meta-analysis. Menopause.
2015; 22(2): 198–206. doi: 10.1097/ GME.0000000000000290.
34. Gleason CE, Fischer BL, Dowling NM, et al. Cognitive effects of soy isoflavones in patients with Alzheimer’s disease. Journal of Alzheimer’s
Disease. 2015; 47(4): 1009–1019. doi: 10.3233 /JAD-142958.
35. Setchell KD, Clerici C. Equol: pharmacokinetics and biological actions.
Journal of Nutrition. 2010; 140(7): 1363S–1368S. doi:10.3945/jn.109.119784.
36. Fischer K, Melo van Lent D, Wolfsgruber S, et al. Prospective associations between single foods, Alzheimer’s dementia and memory decline in the elderly. Nutrients. 2018 Jul; 10(7): 852.
37. Rehm J, Hasan OSM, Black SE, Shield KD, Schwarzinger M. Alcohol use and dementia: a systematic scoping review. Alzheimer’s Research
and Therapy. 2019; 11(1): 1. doi: 10.1186/s13195-018-0453-0.
38. Sabia S, Fayosse A, Dumurgier J, et al. Alcohol consumption and risk of dementia: 23 year follow-up of Whitehall II cohort study. BMJ. 2018;
362: k2927. doi: 10.1136/bmj.k2927.
39. van Gelder BM, Buijsse B, Tijhuis M, et al. Coffee consumption is inversely associated with cognitive decline in elderly European men: the FINE Study. European Journal of Clinical Nutrition. 2007; 61(2):
226–232. doi: 10.1038/sj.ejcn.1602495.
40. Eskelinen MH, Ngandu T, Tuomilehto J, Soininen H, Kivipelto M.
Midlife coffee and tea drinking and the risk of late-life dementia: a population-based CAIDE study. Journal of Alzheimer’s Disease. 2009;
16(1): 85–91. doi: 10.3233/JAD-2009-0920.
41. Wierzejska R. Can coffee consumption lower the risk of Alzheimer’s disease and Parkinson’s disease? A literature review. Archives of Medical
Science. 2017; 13(3): 507–514. doi: 10.5114/aoms.2016.63599.
42. ee SH, He J, Appel LJ, Whelton PK, Suh I, Klag MJ. Coffee consumption and serum lipids: a meta-analysis of randomized controlled clinical trials. American Journal of Epidemiology. 2001; 153(4): 353–362. doi:
10.1093/aje/153.4.353.

Ума Найду
408 43. Wierzejska R. Can coffee consumption lower the risk of Alzheimer’s disease and Parkinson’s disease? A literature review. Archives of Medical
Science. 2017; 13(3): 507–514. doi: 10.5114/aoms.2016.63599.
44. Rinaldi de Alvarenga JF, Quifer-Rada P, Francetto Juliano F, et al. Using extra virgin olive oil to cook vegetables enhances polyphenol and carotenoids extractability: a study applying the sofrito technique. Molecules. 2019 Apr; 24(8): 1555. doi:
10.3390/molecules24081555.
45. Kang H, Zhao F, You L, et al. Pseudo-dementia: a neuropsychological review. Annals of Indian Academy of Neurology. 2014; 17(2): 147–154. doi: 10.4103/0972-2327.132613.
46.
Da Costa IM, Freire MAM, De Paiva Cavalcanti JRL, et al.
Supplementation with Curcuma longa reverses neurotoxic and behavioral damage in models of Alzheimer’s disease: a systematic review. Current Neuropharmacology. 2019; 17(5): 406–421. doi: 10.2174/
0929867325666180117112610.
47. Seddon N, D’Cunha NM, Mellor DD, McKune AJ, Georgousopoulou
EN, Panagiotakos DB, et al. Effects of curcumin on cognitive function — a systematic review of randomized controlled trials.
Exploratory Research and Hypothesis in Medicine. 2019;4 (1): 1. doi:
10.14218/ ERHM.2018.00024.
48. Shoba G, Joy D, Joseph T, Majeed M, Rajendran R, Srinivas PS.
Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Medica. 1998; 64(4): 353–356. doi:
10.1055/s-2006-957450.
49. Ng TP, Chiam PC, Lee T, Chua HC, Lim L, Kua EH. Curry consumption and cognitive function in the elderly. American Journal of Epidemiology.
2006; 164(9): 898–906. doi: 10.1093/aje/kwj267.
50. Mathuranath PS, George A, Ranjith N, et al. Incidence of Alzheimer’s disease in India: a 10 years follow-up study. Neurology India. 2012;
60(6): 625–630. doi: 10.4103/0028-3886.105198.
51. Pandit C, Sai Latha S, Usha Rani T, Anilakumar KR. Pepper and cinnamon improve cold induced cognitive impairment via increasing non-shivering thermogenesis; a study.
International Journal of Hyperthermia. 2018; 35(1): 518–527. doi:
10.1080/02656736.2018.1511835.
52. Akhondzadeh S, Sabet MS, Harirchian MH, et al. Saffron in the treatment of patients with mild to moderate Alzheimer’s disease: a 16-week, randomized and placebo-controlled trial. Journal
of Clinical Pharmacy and Therapeutics. 2010; 35(5): 581–588. doi:
10.1111/j.1365-2710.2009.01133.x.
53.
Diego MA, Jones NA, Field T, et al. Aromatherapy positively affects mood, EEG patterns of alertness and math computations.
International Journal of Neuroscience. 1998; 96(3–4): 217–224. doi:
10.3109/00207459808986469.
54. Moss M, Oliver L. Plasma 1,8-cineole correlates with cognitive performance following exposure to rosemary essential oil aroma.
Therapeutic Advances in Psychopharmacology. 2012; 2(3): 103–113. doi:
10.1177/2045125312436573.

Список литературы
409 55. Moss M, Cook J, Wesnes K, Duckett P. Aromas of rosemary and lavender essential oils differentially affect cognition and mood in healthy adults. International Journal of Neuroscience. 2003; 113(1):
15–38. doi: 10.1080/00207450390161903.
56. Saenghong N, Wattanathorn J, Muchimapura S, et al. Zingiber officinale
improves cognitive function of the middle-aged healthy women.
Evidence-Based Complementary and Alternative Medicine. 2012; 2012:
383062. doi: 10.1155/2012/383062.
57. Zeng GF, Zhang ZY, Lu L, Xiao DQ, Zong SH, He JM. Protective effects of ginger root extract on Alzheimer disease-induced behavioral dysfunction in rats. Rejuvenation Research. 2013; 16(2): 124–133. doi:
10.1089/rej.2012.1389; Azam F, Amer AM, Abulifa AR, Elzwawi MM.
Ginger components as new leads for the design and development of novel multi-targeted anti-Alzheimer’s drugs: a computational investigation. Drug Design, Development and Therapy. 2014; 8: 2045–
2059. doi: 10.2147/DDDT.S67778.
58. Lopresti AL. Salvia (sage): a review of its potential cognitive-enhancing and protective effects. Drugs in R&D. 2017; 17(1): 53–64. doi: 10.1007/
s40268-016-0157-5.
59. Tildesley NT, Kennedy DO, Perry EK, et al. Salvia lavandulaefolia
(Spanish sage) enhances memory in healthy young volunteers.
Pharmacology, Biochemistry, and Behavior. 2003; 75(3): 669–674;
Tildesley NT, Kennedy DO, Perry EK, Ballard CG, Wesnes KA, Scholey
AB. Positive modulation of mood and cognitive performance following administration of acute doses of Salvia lavandulaefolia essential oil to healthy young volunteers. Physiology and Behavior. 2005; 83(5):
699–709.
60. Kennedy DO, Pace S, Haskell C, Okello EJ, Milne A, Scholey AB.
Effects of cholinesterase inhibiting sage (Salvia officinalis) on mood, anxiety and performance on a psychological stressor battery.
Neuropsychopharmacology. 2006; 31(4): 845–852.
61. Morris MC, Tangney CC, Wang Y, Sacks FM, Bennett DA, Aggarwal
NT. MIND diet associated with reduced incidence of Alzheimer’s disease. Alzheimer’s and Dementia. 2015; 11(9): 1007–1014. doi:
10.1016/j.jalz.2014.11.009.
62. Challa HJ, Tadi P, Uppaluri KR. DASH Diet (Dietary Approaches
to Stop Hypertension) [updated May 15, 2019]. In: StatPearls [internet].
TreasureIsland, FL: StatPearls Publishing; 2019 Jan–.Available from: https://www.ncbi.nlm.nih.gov/books/NBK482514/.
63. Morris MC, Tangney CC, Wang Y, Sacks FM, Bennett DA, Aggarwal
NT. MIND diet associated with reduced incidence of Alzheimer’s disease. Alzheimer’s and Dementia. 2015; 11(9): 1007–1014. doi:
10.1016/j.jalz.2014.11.009.
64. Hosking DE, Eramudugolla R, Cherbuin N, Anstey KJ. MIND not
Mediterranean diet related to 12-year incidence of cognitive impairment in an Australian longitudinal cohort study. Alzheimer’s and Dementia.
2019; 15(4): 581–589. doi: 10.1016/j.jalz.2018.12.011.
65. Agarwal P, Wang Y, Buchman AS, Holland TM, Bennett DA, Morris
MC. MIND diet associated with reduced incidence and delayed

Ума Найду
410
progression of Parkinsonism in old age. Journal of Nutrition, Health
and Aging. 2018; 22(10): 1211–1215. doi: 10.1007/s12603-018-1094-5.
66. Morris MC, Tangney CC, Wang Y, et al. MIND diet slows cognitive decline with aging. Alzheimer’s and Dementia. 2015; 11(9): 1015–1022. doi: 10.1016/j.jalz.2015.04.011.
67. Theoharides TC, Stewart JM, Hatziagelaki E, Kolaitis G. Brain “fog,” inflammation and obesity: key aspects of neuropsychiatric disorders improved by luteolin. Frontiers in Neuroscience. 2015; 9: 225. doi:
10.3389/fnins.2015.00225.
68. Rao SSC, Rehman A, Yu S, Andino NM. Brain fogginess, gas and bloating: a link between SIBO, probiotics and metabolic acidosis.
Clinical and Translational Gastroenterology. 2018; 9(6): 162.
69. Harper L, Bold J. An exploration into the motivation for gluten avoidance in the absence of coeliac disease. Gastroenterology
and Hepatology from Bed to Bench. 2018; 11(3): 259–268.
70. Kato-Kataoka A, Sakai M, Ebina R, Nonaka C, Asano T, Miyamori T.
Soybean-derived phosphatidylserine improves memory function of the elderly Japanese subjects with memory complaints. Journal of Clinical
Biochemistry and Nutrition. 2010; 47(3): 246–255. doi: 10.3164/jcbn.10-62.
71. Fioravanti M, Buckley AE. Citicoline (Cognizin) in the treatment of cognitive impairment. Clinical Interventions in Aging. 2006; 1(3):
247–251. doi: 10.2147/ciia.2006.1.3.247.
1   ...   25   26   27   28   29   30   31   32   33


написать администратору сайта