Найду. Беспокойный мозг (2021). Ума Найду раскрывает множество секретов, в каждой главе рассказывая о вредных и полезных элементах повседневных продуктов, которые усугубляют наше психоэмоциональное состояние
Скачать 7.83 Mb.
|
ГЛАВА 7. Обсессивно-компульсивное расстройство 1. Goodwin GM. The overlap between anxiety, depression, and obsessive- compulsive disorder. Dialogues in Clinical Neuroscience. 2015; 17(3): 249–260. 2. Pallanti S, Grassi G, Sarrecchia ED, Cantisani A, Pellegrini M. Obsessive-compulsive disorder comorbidity: clinical assessment and therapeutic implications. Frontiers in Psychiatry. 2011; 2. doi: 10.3389/fpsyt.2011.00070. 3. Kantak PA, Bobrow DN, Nyby JG. Obsessive-compulsive-like behaviors in house mice are attenuated by a probiotic (Lactobacillus rhamnosus GG). Behavioural Pharmacology. 2014; 25(1): 71–79. doi: 10.1097/ fbp.0000000000000013. 4. Jung TD, Jung PS, Raveendran L, et al. Changes in gut microbiota during development of compulsive checking and locomotor sensitization induced by chronic treatment with the dopamine agonist quinpirole. Behavioural Pharmacology. 2018; 29(2–3; special issue): 211–224. 5. Turna J, Grosman Kaplan K, Anglin R, Van Ameringen M. “What’s bugging the gut in OCD?” A review of the gut microbiome in obsessive- compulsive disorder. Depression and Anxiety. 2015; 33(3): 171–178. doi: 10.1002/da.22454. 6. Gustafsson PE, Gustafsson PA, Ivarsson T, Nelson N. Diurnal cortisol levels and cortisol response in youths with obsessive-compulsive disorder. Neuropsychobiology. 2008; 57(1–2): 14–21. doi: 10.1159/000123117. Список литературы 411 7. Rees JC. Obsessive-compulsive disorder and gut microbiota dysregulation. Medical Hypotheses. 2014; 82(2): 163–166. doi: 10.1016/j. mehy.2013.11.026. 8. Real E, Labad J, Alonso P, et al. Stressful life events at onset of obsessive-compulsive disorder are associated with a distinct clinical pattern. Depression and Anxiety. 2011; 28(5): 367–376.doi: 10.1002/ da.20792. 9. Holton KF, Cotter EW. Could dietary glutamate be contributing to the symptoms of obsessive-compulsive disorder? Future Science OA. 2018; 4(3): FSO277. doi: 10.4155/fsoa-2017-0105. 10. Vlček P, Polák J, Brunovský M, Horáček J. Correction: role of glutamatergic system in obsessive-compulsive disorder with possible therapeutic implications. Pharmacopsychiatry. 2017; 51(6): e3–e3. doi: 10.1055/s-0043-121511. 11. Pittenger C, Bloch MH, Williams K. Glutamate abnormalities in obsessive compulsive disorder: neurobiology, pathophysiology, and treatment. Pharmacology and Therapeutics. 2011; 132(3): 314–332. doi: 10.1016/j.pharmthera.2011.09.006. 12. Li Y, Zhang CC, Weidacker K, et al. Investigation of anterior cingulated cortex gamma-aminobutyric acid and glutamate- glutamine levels in obsessive-compulsive disorder using magnetic resonance spectroscopy. BMC Psychiatry. 2019; 19(1). doi: 10.1186/ s12888-019-2160-1. 13. Rodrigo L, Alvarez N, Fernandez-Bustillo E, Salas-Puig J, Huerta M, Hernandez-Lahoz C. Efficacy of a gluten-free diet in the Gilles de la Tourette syndrome: a pilot study. Nutrients. 2018; 10(5): 573. doi: 10.3390/nu10050573. 14. Pennisi M, Bramanti A, Cantone M, Pennisi G, Bella R, Lanza G. Neurophysiology of the “celiac brain”: disentangling gut-brain connections. Frontiers in Neuroscience. 2017; 11. doi: 10.3389/ fnins.2017.00498. 15. Weiss AP, Jenike MA. Late-onset obsessive- compulsive disorder. Journal of Neuropsychiatry and Clinical Neurosciences. 2000; 12(2): 265–268. doi: 10.1176/jnp.12.2.265. 16. Wright RA, Arnold MB, Wheeler WJ, Ornstein PL, Schoepp DD. [3H] LY341495 binding to group II metabotropic glutamate receptors in rat brain. Journal of Pharmacology and Experimental Therapeutics. 2001; 298(2): 453–460. 17. Berk M, Ng F, Dean O, Dodd S, Bush AI. Glutathione: a novel treatment target in psychiatry. Trends in Pharmacological Sciences. 2008; 29(7): 346– 351. doi: 10.1016/ j.tips.2008.05.001; Ng F, Berk M, Dean O, Bush AI. Oxidative stress in psychiatric disorders: evidence base and therapeutic implications. International Journal of Neuropsychopharmacology. 2008; 11(6). doi: 10.1017/s1461145707008401. 18. Ghanizadeh A, Mohammadi MR, Bahraini S, Keshavarzi Z, Firoozabadi A, Alavi Shoshtari A. Efficacy of N-acetylcysteine augmentation on obsessive compulsive disorder: a multicenter randomized double blind placebo controlled clinical trial. Iranian Journal of Psychiatry. 2017; 12(2): 134–141. Ума Найду 412 19. Lafleur DL, Pittenger C, Kelmendi B, et al. N-acetylcysteine augmentation in serotonin reuptake inhibitor refractory obsessive- compulsive disorder. Psychopharmacology. 2005; 184(2): 254–256. doi: 10.1007/s00213-005-0246-6. 20. Grant JE, Odlaug BL, Won Kim S. N-acetylcysteine, a glutamate modulator, in the treatment of trichotillomania. Archives of General Psychiatry. 2009; 66(7): 756. doi: 10.1001/ archgenpsychiatry.2009.60. 21. Berk M, Jeavons S, Dean OM, et al. Nail-biting stuff? The effect of N-acetyl cysteine on nail-biting. CNS Spectrums. 2009; 14(7): 357–360. doi:10.1017/s1092852900023002; Odlaug BL, Grant JE. N-acetyl cysteine in the treatment of grooming disorders. Journal of Clinical Psychopharmacology. 2007; 27(2): 227–229. doi: 10.1097/01. jcp.0000264976.86990.00; Braun TL, Patel V, DeBord LC, Rosen T. A review of N-acetylcysteine in the treatment of grooming disorders. International Journal of Dermatology. 2019; 58(4): 502–510. doi: 10.1111/ijd.14371. 22. Frey R, Metzler D, Fischer P, et al. Myo-inositol in depressive and healthy subjects determined by frontal 1H-magnetic resonance spectroscopy at 1.5 tesla. Journal of Psychiatric Research. 1998; 32(6): 411–420. doi: 10.1016/s0022-3956(98)00033-8. 23. Fisher SK, Heacock AM, Agranoff BW. Inositol lipids and signal transduction in the nervous system: an update. Journal of Neurochemistry. 1992; 58(1): 18–38. doi: 10.1111/j.1471-4159.1992. tb09273.x. 24. Einat H, Belmaker R. The effects of inositol treatment in animal models of psychiatric disorders. Journal of Affective Disorders. 2001; 62(1–2): 113–121. doi: 10.1016/s0165-0327(00)00355-4. 25. Fux M, Levine J, Aviv A, Belmaker RH. Inositol treatment of obsessive- compulsive disorder. American Journal of Psychiatry. 1996; 153(9): 1219–1221. doi: 10.1176/ajp.153.9.1219. 26. Fux M, Benjamin J, Belmaker RH. Inositol versus placebo augmentation of serotonin reuptake inhibitors in the treatment of obsessive- compulsive disorder: a double-blind cross-over study. International Journal of Neuropsychopharmacology. 1999; 2(3): 193–195.doi: 10.1017/ s1461145799001546. 27. Albelda N, Bar-On N, Joel D. The role of NMDA receptors in the signal attenuation rat model of obsessive-compulsive disorder. Psychopharmacology. 2010; 210(1): 13–24. doi: 10.1007 /s00213-010- 1808-9; Singer HS, Morris C, Grados M. Glutamatergic modulatory therapy for Tourette syndrome. Medical Hypotheses. 2010; 74(5): 862– 867. doi: 10.1016/j.mehy.2009.11.028. 28. Greenberg WM, Benedict MM, Doerfer J, et al. Adjunctive glycine in the treatment of obsessive-compulsive disorder in adults. Journal of Psychiatric Research. 2009; 43(6): 664–670. doi: 10.1016/j. jpsychires.2008.10.007. 29. Cleveland WL, DeLaPaz RL, Fawwaz RA, Challop RS. High-dose glycine treatment of refractory obsessive-compulsive disorder and body dysmorphic disorder in a 5-year period. Neural Plasticity. 2009; 2009: 1–25. doi: 10.1155/2009/768398. Список литературы 413 30. Mazzio E, Harris N, Soliman K. Food constituents attenuate monoamine oxidase activity and peroxide levels in C6 astrocyte cells. Planta Medica. 1998; 64(7): 603–606. doi: 10.1055/s-2006-957530. 31. Sayyah M, Boostani H, Pakseresht S, Malayeri A. Comparison of Silybum marianum (L.) Gaertn. with fluoxetine in the treatment of obsessive-compulsive disorder. Progress in Neuro- Psychopharmacology and Biological Psychiatry. 2010; 34(2): 362–365. doi: 10.1016/ j.pnpbp.2009.12.016. 32. Hermesh H, Weizman A, Shahar A, Munitz H. Vitamin B12 and folic acid serum levels in obsessive compulsive disorder. Acta Psychiatrica Scandinavica. 1988; 78(1): 8–10. doi: 10.1111 /j.1600-0447.1988. tb06294.x; Ozdemir O, Turksoy N, Bilici R, et al. Vitamin B12, folate, and homocysteine levels in patients with obsessive-compulsive disorder. Neuropsychiatric Disease and Treatment. September 2014: 1671. doi: 10.2147/ndt.s67668. 33. Sharma V, Biswas D. Cobalamin deficiency presenting as obsessive compulsive disorder: case report. General Hospital Psychiatry. 2012; 34(5): 578.e7–578.e8. doi: 10.1016/ j.genhosppsych.2011.11.006. 34. Watanabe F, Yabuta Y, Bito T, Teng F. Vitamin B12-containing plant food sources for vegetarians. Nutrients. 2014; 6(5): 1861–1873. doi: 10.3390/nu6051861. 35. Watanabe F, Katsura H, Takenaka S, et al. Pseudovitamin B12 is the predominant cobamide of an algal health food, spirulina tablets. Journal of Agricultural and Food Chemistry. 1999; 47(11): 4736–4741. doi: 10.1021/jf990541b. 36. Chimakurthy J, Murthy TE. Effect of curcumin on quinpirole induced compulsive checking: an approach to determine the predictive and construct validity of the model. North American Journal of Medical Sciences. 2010; 2(2): 81–86. 37. Depa J, Barrada J, Roncero M. Are the motives for food choices different in orthorexia nervosa and healthy orthorexia? Nutrients. 2019; 11(3): 697. doi: 10.3390/nu11030697. 38. Turner PG, Lefevre CE. Instagram use is linked to increased symptoms of orthorexia nervosa. Eating and Weight Disorders — Studies on Anorexia, Bulimia and Obesity. 2017; 22(2): 277–2784. doi: 10.1007/ s40519-017-0364-2. 39. Contesini N, Adami F, Blake M, et al. Nutritional strategies of physically active subjects with muscle dysmorphia. International Archives of Medicine. 2013; 6(1): 25. doi: 10.1186/1755-7682-6-25. 40. Position of the American Dietetic Association, Dietitians of Canada, and the American College of Sports Medicine: nutrition and athletic performance. Journal of the American Dietetic Association. 2009; 109(3): 509–527. doi: 10.1016/j.jada.2009.01.005. ГЛАВА 8. Бессонница и быстрая утомляемость 1. Bhaskar S, Hemavathy D, Prasad S. Prevalence of chronic insomnia in adult patients and its correlation with medical comorbidities. Ума Найду 414 Journal of Family Medicine and Primary Care. 2016;5(4):780. doi:10.4103/2249-4863.201153. 2. Dikeos D, Georgantopoulos G. Medical comorbidity of sleep disorders. Current Opinion in Psychiatry. 2011; 24(4): 346–354. doi: 10.1097/ yco.0b013e3283473375. 3. Li Y, Hao Y, Fan F, Zhang B. The role of microbiome in insomnia, circadian disturbance and depression. Frontiers in Psychiatry. 2018; 9. doi: 10.3389/fpsyt.2018.00669. 4. Davies SK, Ang JE, Revell VL, et al. Effect of sleep deprivation on the human metabolome. Proceedings of the National Academy of Sciences of the United States of America. 2014; 111(29): 10761–10766. doi: 10.1073/pnas.1402663111. 5. Johnston JD, Ordovas JM, Scheer FA, Turek FW. Circadian rhythms, metabolism, and chrononutrition in rodents and humans. Advances in Nutrition. 2016; 7(2): 399–406. doi: 10.3945/an.115.010777. 6. Thaiss CA, Zeevi D, Levy M, et al. Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis. Cell. 2014; 159(3): 514–529. doi: 10.1016/j.cell.2014.09.048. 7. Thaiss CA, Levy M, Korem T, et al. Microbiota diurnal rhythmicity programs host transcriptome oscillations. Cell. 2016; 167(6): 1495– 1510.e12. doi: 10.1016/j.cell.2016.11.003. 8. Thaiss et al. Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis. Cell. 2014; 159(3): 514–29. doi: 10.1016/j.cell.2014.09.048. 9. Kunze KN, Hanlon EC, Prachand VN, Brady MJ. Peripheral circadian misalignment: contributor to systemic insulin resistance and potential intervention to improve bariatric surgical outcomes. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology. 2016; 311(3): R558–R563. doi: 10.1152/ajpregu.00175.2016. 10. Poroyko VA, Carreras A, Khalyfa A, et al. Chronic sleep disruption alters gut microbiota, induces systemic and adipose tissue inflammation and insulin resistance in mice. Scientific Reports. 2016; 6(1). doi: 10.1038/srep35405. 11. Vanuytsel T, van Wanrooy S, Vanheel H, et al. Psychological stress and corticotropin-releasing hormone increase intestinal permeability in humans by a mast cell-dependent mechanism. Gut. 2013; 63(8): 1293–1299. doi: 10.1136/gutjnl-2013-305690. 12. A Demographic Profile of U.S. Workers Around the Clock. Population Reference Bureau (PRB) website. September 18, 2008. https://www.prb. org/workingaroundtheclock/. Accessed October 3, 2019. 13. Reynolds AC, Paterson JL, Ferguson SA, Stanley D, Wright KP Jr, Dawson D. The shift work and health research agenda: considering changes in gut microbiota as a pathway linking shift work, sleep loss and circadian misalignment, and metabolic disease. Sleep Medicine Reviews. 2017; 34: 3–9. doi: 10.1016/j.smrv.2016.06.009. 14. Katagiri R, Asakura K, Kobayashi S, Suga H, Sasaki S. Low intake of vegetables, high intake of confectionary, and unhealthy eating habits are associated with poor sleep quality among middle-aged female Japanese workers. Journal of Occupational Health. 2014; 56(5): 359–368. doi: 10.1539/joh.14-0051-oa. Список литературы 415 15. Afaghi A, O’Connor H, Chow CM. High-glycemic-index carbohydrate meals shorten sleep onset. American Journal of Clinical Nutrition. 2007; 85(2): 426–430. doi: 10.1093/ajcn/85.2.426. 16. St-Onge M-P, Roberts A, Shechter A, Choudhury AR. Fiber and saturated fat are associated with sleep arousals and slow wave sleep. Journal of Clinical Sleep Medicine. 2016; 12(1): 19–24. doi: 10.5664/ jcsm.5384. 17. Shechter A, O’Keeffe M, Roberts AL, Zammit GK, Choudhury AR, St- Onge M-P. Alterations in sleep architecture in response to experimental sleep curtailment are associated with signs of positive energy balance. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology. 2012; 303(9): R883–R889. doi: 10.1152/ajpregu.00222.2012. 18. Grandner MA, Jackson N, Gerstner JR, Knutson KL. Dietary nutrients associated with short and long sleep duration. Data from a nationally representative sample. Appetite. 2013; 64: 71–80. 19. Sheehan CM, Frochen SE, Walsemann KM, Ailshire JA. Are U.S. adults reporting less sleep? Findings from sleep duration trends in the National Health Interview Survey, 2004–2017. Sleep. 2018; 42(2). doi: 10.1093/sleep/zsy221. 20. Ribeiro JA1, Sebastiao AM. Caffeine and adenosine. Journal of Alzheimer’s Disease. 2010; 20(suppl 1): S3–15.doi: 10.3233/ JAD-2010-1379. 21. Drake C, Roehrs T, Shambroom J, Roth T. Caffeine effects on sleep taken 0, 3, or 6 hours before going to bed. Journal of Clinical Sleep Medicine. November 2013. doi: 10.5664/ jcsm.3170. 22. Poole R, Kennedy OJ, Roderick P, Fallowfield JA, Hayes PC, Parkes J. Coffee consumption and health: umbrella review of meta-analyses of multiple health outcomes. BMJ. November 2017: j5024. doi: 10.1136/ bmj.j5024. 23. Roehrs T. Ethanol as a hypnotic in insomniacs: self administration and effects on sleep and mood. Neuropsychopharmacology. 1999; 20(3): 279–286. doi: 10.1016/s0893-133x(98)00068-2. 24. Feige B, Gann H, Brueck R, et al. Effects of alcohol on polysomnographically recorded sleep in healthy subjects. Alcoholism: Clinical and Experimental Research. 2006; 30(9): 1527–1537. doi: 10.1111/j.1530-0277.2006.00184.x. 25. Chan JKM, Trinder J, Andrewes HE, Colrain IM, Nicholas CL. The acute effects of alcohol on sleep architecture in late adolescence. Alcoholism: Clinical and Experimental Research. June 2013: n/a-n/a. doi: 10.1111/acer.12141. 26. Rosales-Lagarde A, Armony JL, del Río-Portilla Y, Trejo-Martínez D, Conde R, Corsi-Cabrera M. Enhanced emotional reactivity after selective REM sleep deprivation in humans: an fMRI study. Frontiers in Behavioral Neuroscience. 2012; 6. doi: 10.3389/fnbeh.2012.00025. 27. Lowe PP, Gyongyosi B, Satishchandran A, et al. Reduced gut microbiome protects from alcohol-induced neuroinflammation and alters intestinal and brain inflammasome expression. Journal of Neuroinflammation. 2018; 15(1). doi: 10.1186/s12974-018-1328-9; Gorky J, Schwaber J. The role of the gut-brain axis in alcohol use disorders. Progress Ума Найду 416 in Neuro-Psychopharmacology and Biological Psychiatry. 2016; 65: 234– 241. doi: 10.1016/j.pnpbp. 2015.06.013. 28. Decoeur F, Benmamar-Badel A, Leyrolle Q, Persillet M, Laye S, Nadjar A. Dietary N-3 PUFA deficiency affects sleep-wake activity in basal condition and in response to an inflammatory challenge in mice. Brain, Behavior, and Immunity. May 2019. doi:10.1016/ j.bbi.2019.05.016; Alzoubi KH, Mayyas F, Abu Zamzam HI. Omega-3 fatty acids protects against chronic sleep-deprivation induced memory impairment. Life Sciences. 2019; 227: 1–7. doi: 10.1016/j.lfs.2019.04.028. 29. Jahangard L, Sadeghi A, Ahmadpanah M, et al. Influence of adjuvant omega-3-polyunsaturated fatty acids on depression, sleep, and emotion regulation among outpatients with major depressive disorders — results from a double-blind, randomized and placebo-controlled clinical trial. Journal of Psychiatric Research. 2018; 107: 48–56.doi: 10.1016/j. jpsychires. 2018.09.016. 30. Yehuda S, Rabinovitz S, Mostofsk DI. Essential fatty acids and sleep: mini-review and hypothesis. Medical Hypotheses. 1998; 50(2): 139–145. doi: 10.1016/s0306-9877(98)90200-6. 31. Urade Y, Hayaishi O. Prostaglandin D2 and sleep/wake regulation. Sleep Medicine Reviews. 2011; 15(6): 411–418.doi:10.1016/j.smrv.2011.08.003; Zhang H, Hamilton JH, Salem N, Kim HY. N-3 fatty acid deficiency inthe rat pineal gland: effects on phospholipid molecular species compositionand endogenous levels of melatonin and lipoxygenase products. Journal of Lipid Research. 1998; 39(7): 1397–1403. 32. Papandreou C. Independent associations between fatty acids and sleep quality among obese patients with obstructive sleep apnoea syndrome. Journal of Sleep Research. 2013; 22(5): 569–72. doi: 10.1111/jsr.12043. 33. Hartmann E. Effects of L-tryptophan on sleepiness and on sleep. Journal of Psychiatric Research. 1982; 17(2): 107–113.doi: 10.1016/0022-3956(82)90012-7. 34. Esteban S, Nicolaus C, Garmundi A, et al. Effect of orally administered l-tryptophan on serotonin, melatonin, and the innate immune response in the rat. Molecular and Cellular Biochemistry. 2004; 267(1–2): 39–46. doi: 10.1023/b:mcbi.0000049363.97713.74. 35. Miyake M, Kirisako T, Kokubo T, et al. Randomised controlled trial of the effects of L-ornithine on stress markers and sleep quality in healthy workers. Nutrition Journal. 2014; 13(1). doi: 10.1186/1475-2891-13-53. 36. Adib-Hajbaghery M, Mousavi SN. The effects of chamomile extract on sleep quality among elderly people: a clinical trial. Complementary Therapies in Medicine. 2017; 35: 109–114. doi: 10. 1016/j.ctim.2017.09.010. 37. Hieu TH, Dibas M, Surya Dila KA, et al. Therapeutic efficacy and safety of chamomile for state anxiety, generalized anxiety disorder, insomnia, and sleep quality: a systematic review and meta-analysis of randomized trials and quasi-randomized trials. Phytotherapy Research. 2019; 33(6): 1604–1615. doi: 10.1002/ptr.6349. 38. Avallone R, Zanoli P, Corsi L, Cannazza G, Baraldi M. Benzodiazepine- likecompounds and GABA in flower heads of Matricaria chamomilla. Phytotherapy Research. 1996; 10: S177–S179. Список литературы 417 39. Zeng Y, Pu X, Yang J, et al. Preventive and therapeutic role of functional ingredients of barley grass for chronic diseases in human beings. Oxidative Medicine and Cellular Longevity. 2018; 2018: 1–15. doi: 10.1155/2018/3232080. 40. Zeng Y, Pu X, Yang J, et al. Preventive and therapeutic role of functional ingredients of barley grass for chronic diseases in human beings. Oxidative Medicine and Cellular Longevity. 2018; 2018: 1–15. doi: 10.1155/2018/3232080. 41. Chanana P, Kumar A. GABA-BZD receptor modulating mechanism of Panax quinquefolius against 72-h sleep deprivation induced anxiety like behavior: possible roles of oxidative stress, mitochondrial dysfunction and neuroinflammation. Frontiers in Neuroscience. 2016; 10. doi: 10.3389/fnins.2016.00084. 42. Chu Q-P, Wang L-E, Cui X-Y, et al. Extract of Ganoderma lucidum potentiates pentobarbital-inducedsleep via a GABAergic mechanism. Pharmacology Biochemistry and Behavior. 2007; 86(4): 693–698.doi: 10.1016/j.pbb.2007.02.015. 43. Kim HD, Hong K-B, Noh DO, Suh HJ. Sleep-inducing effect of lettuce (Lactuca sativa) varieties on pentobarbital-induced sleep. Food Science and Biotechnology. 2017; 26(3): 807–814. doi: 10.1007/s10068-017-0107-1. 44. Kelley D, Adkins Y, Laugero K. A review of the health benefits of cherries. Nutrients. 2018; 10(3): 368. doi: 10.3390/nu10030368. 45. Pigeon WR, Carr M, Gorman C, Perlis ML. Effects of a tart cherry juice beverage on the sleep of older adults with insomnia: a pilot study. Journal of Medicinal Food. 2010; 13(3): 579–583. doi: 10.1089/jmf.2009.0096. 46. Losso JN, Finley JW, Karki N, et al. Pilot study of the tart cherry juice for the treatment of insomnia and investigation of mechanisms. American Journal of Therapeutics. 2018; 25(2): e194–e201. doi: 10.1097/ mjt.0000000000000584. 47. Sears B. Anti-inflammatory diets. Journal of the American College of Nutrition. 2015; 34(suppl 1): 14–21. doi: 10.1080/07315724.2015.1080105. 48. Pérez-Jiménez J, Neveu V, Vos F, Scalbert A. Identification of the 100 richest dietary sources of polyphenols: an application of the Phenol-Explorer database. European Journal of Clinical Nutrition. 2010; 64(S3): S112–S120. doi: 10.1038/ejcn.2010.221. 49. Mellen PB, Daniel KR, Brosnihan KB, Hansen KJ, Herrington DM. Effect of muscadine grape seed supplementation on vascular function in subjects with or at risk for cardiovascular disease: a randomized crossover trial. Journal of the American College of Nutrition. 2010; 29(5): 469–475. 50. Ricker MA, Haas WC. Anti-inflammatory diet in clinical practice: a review. Nutrition in Clinical Practice. 2017; 32(3): 318–325. doi: 10.1177/0884533617700353. 51. Joseph P, Abey S, Henderson W. Emerging role of nutri-epigenetics in inflammation and cancer. Oncology Nursing Forum. 2016; 43(6): 784–788. doi: 10.1188/16.onf.784–788. 52. Cox IM, Campbell MJ, Dowson D. Red blood cell magnesium and chronic fatigue syndrome. Lancet. 1991; 337(8744): 757–760. doi: 10.1016/0140- 6736(91)91371-z. Ума Найду 418 53. Cheng S-M, Yang D-Y, Lee C-P, et al. Effects of magnesium sulfate on dynamic changes of brain glucose and its metabolites during a short-term forced swimming in gerbils. European Journal of Applied Physiology. 2007; 99(6): 695–699. doi: 10.1007/s00421-006-0374-7. 54. Watkins JH, Nakajima H, Hanaoka K, Zhao L, Iwamoto T, Okabe T. Effect of zinc on strength and fatigue resistance of amalgam. Dental Materials. 1995; 11(1): 24–33. doi: 10.1016/0109-5641(95)80005-0; Ribeiro SMF, Braga CBM, Peria FM, Martinez EZ, Rocha JJRD, Cunha SFC. Effects of zinc supplementation on fatigue and quality of life in patients with colorectal cancer. Einstein (Sao Paulo). 2017; 15(1): 24–28. doi: 10.1590/s1679-45082017ao3830. 55. Heap LC, Peters TJ, Wessely S. Vitamin B status in patients with chronic fatigue syndrome. Journal of the Royal Society of Medicine. 1999; 92(4): 183–185. 56. Kirksey A, Morre DM, Wasynczuk AZ. Neuronal development in vitamin B6 deficiency. Annals of the New York Academy of Sciences. 1990; 585(1 Vitamin B6): 202–218. doi: 10.1111 /j.1749-6632.1990. tb28054.x. 57. Jacobson W, Saich T, Borysiewicz LK, Behan WMH, Behan PO, Wreghitt TG. Serum folate and chronic fatigue syndrome. Neurology. 1993; 43(12): 2645– 2647. doi:10.1212/wnl.43.12.2645. 58. Mahmood L. The metabolic processes of folic acid and vitamin B 12 deficiency. Journal of Health Research and Reviews. 2014; 1(1): 5. doi: 10.4103/2394-2010.143318. 59. Tweet MS, Polga KM. 44-year-old man with shortness of breath, fatigue, and paresthesia. Mayo Clinic Proceedings. 2010; 85(12): 1148–51. doi: 10.4065/mcp.2009.0662. 60. Huijts M, Duits A, Staals J, van Oostenbrugge RJ. Association of vitamin B12 deficiency with fatigue and depression after lacunar stroke. De Windt LJ, ed. PLoS One. 2012; 7(1): e30519. doi: 10.1371/journal. pone.0030519. 61. Chan CQH, Low LL, Lee KH. Oral vitamin B12 replacement for the treatment of pernicious anemia. Frontiers in Medicine. 2016; 3. doi: 10.3389/fmed.2016.00038. 62. Does vitamin C influence neurodegenerative diseases and psychiatric disorders? Nutrients. 2017; 9(7): 659. doi: 10.3390/nu9070659. 63. Anjum I, Jaffery SS, Fayyaz M, Samoo Z, Anjum S. The role of vitamin D in brain health: a mini literature review. Cureus. July 2018. doi: 10.7759/cureus.2960. 64. Neale RE, Khan SR, Lucas RM, Waterhouse M, Whiteman DC, Olsen CM. The effect of sunscreen on vitamin D: a review. British Journal of Dermatology. July 2019. doi: 10.1111 /bjd.17980. 65. Traber MG. Vitamin E inadequacy in humans: causes and consequences. Advances in Nutrition. 2014; 5(5): 503–514. doi: 10.3945/an.114.006254. 66. Hsu Y-J, Huang W-C, Chiu C-C, et al. Capsaicin supplementation reduces physical fatigue and improves exercise performance in mice. Nutrients. 2016; 8(10): 648. doi: 10.3390/nu8100648. 67. Janssens PLHR, Hursel R, Martens EAP, Westerterp-Plantenga MS. Acute effects of capsaicin on energy expenditure and fat oxidation Список литературы 419 in negative energy balance. Tome D, ed. PLoS One. 2013; 8(7): e67786. doi: 10.1371/journal.pone.0067786. 68. Fattori V, Hohmann M, Rossaneis A, Pinho-Ribeiro F, Verri W. Capsaicin: current understanding of its mechanisms and therapy of pain and other pre-clinical and clinical uses. Molecules. 2016; 21(7): 844. doi: 10.3390/molecules21070844. 69. Zheng J, Zheng S, Feng Q, Zhang Q, Xiao X. Dietary capsaicin and its anti-obesity potency: from mechanism to clinical implications. Bioscience Reports. 2017; 37(3): BSR20170286. doi: 10.1042/bsr20170286. 70. Gregersen NT, Belza A, Jensen MG, et al. Acute effects of mustard, horseradish, black pepper and ginger on energy expenditure, appetite, ad libitum energy intake and energy balance in human subjects. British Journal of Nutrition. 2012; 109(3): 556–563. doi: 10.1017/ s0007114512001201. 71. Rahman M, Yang DK, Kim G-B, Lee S-J, Kim S-J. Nigella sativa seed extract attenuates the fatigue induced by exhaustive swimming in rats. Biomedical Reports. 2017;6(4):468–74. doi:10.3892/br.2017.866; Yimer EM, Tuem KB, Karim A, Ur-Rehman N, Anwar F. Nigella sativa L. (black cumin): a promising natural remedy for wide range of illnesses. Evidence-Based Complementary and Alternative Medicine. 2019; 2019: 1–16.doi: 10.1155 /2019/1528635. 72. Huang W-C, Chiu W-C, Chuang H-L, et al. Effect of curcumin supplementation on physiological fatigue and physical performance in mice. Nutrients. 2015; 7(2): 905–921. doi: 10.3390/nu7020905. |