Билеты по строит. машинам. Управления машин Нарисовать схему и охарактеризовать назначение каждого узла
Скачать 3.6 Mb.
|
2.Канатно-блочная система управления машин. Канатно-блочная система управления применяется на скреперах, бульдозерах и на различном навесном тракторном оборудовании (кусторезах, корчевателях и т. п.). Рис. 28. Схемы канатно-блочных систем управления; а — с полиспастом; б — с зубчатой передачей Основными частями этой системы управления являются: лебедка, тормоз, направляющие блоки и канатный полиспаст (рис. 28). Редуцирующим звеном, вместо канатного полиспаста, может служить зубчатый редуктор. Достоинством канатно-блочной системы управления является простота конструкции, а недостатком — громоздкость, низкий к. п. д., а также невозможность принудительного заглубления рабочих органов. В зависимости от числа управляемых частей рабочего органа применяются один, два или три каната. Соответственно и лебедка может иметь один, два или три барабана. Применяемые в канатно-блочных системах управления лебедки можно классифицировать по следующим признакам:
В настоящее время подавляющее число лебедок землеройно-транспортных машин по отношению к трактору имеет заднее расположение. При поперечном расположении лебедки значительно уменьшается число перегибов канатов и число направляющих блоков. 3.Основные технико-экономические показатели машин. При выборе машин для производства строительных работ определенного вида и объема за основу принимают их технико-эксплуатационные и технико-экономические показатели, при сопоставлении которых находят оптимальные типоразмеры и количество машин для выполнения требуемых технологических операций. 4.Типы ходового устройства. Как определить максимальное давление гусеничного хода на грунт? Виды ходового оборудования строительных машин. Системы управления и требования, предъявляемые к ним. Ходовое оборудование предназначено: - для передачи на опорную поверхность (грунт, дорожное покрытие, рельсы) веса машины и внешних нагрузок, действующих на нее при работе; - передвижения машины на рабочих (при выполнении рабочего процесса) и транспортных скоростях; - для стопорения машины при работе. Ходовое оборудование включает гусеничное, пневмоколесное, гусенично-колесное или рельсовое ходовое устройство и механизмы для его привода. Каждое ходовое устройство состоит из движителя и подвески. Движитель находится в постоянном контакте (сцеплении) с опорной поверхностью и обеспечивает поступательное движение машины. Подвеска соединяет движитель с опорной рамой машины и выполняется жесткой у тихоходных машин, полужесткой и упругой — у быстроходных. Самоходные строительные машины монтируют на базе серийных грузовых автомобилей, колесных и гусеничных тракторов, пневмоколесных тягачей и специальных гусеничных и пневмоколесных шасси с приводом от общей трансмиссии машины или от индивидуальных электрических и гидравлических двигателей. Специальные шасси современных строительных машин унифицированы. Пневмоколесное ходовое оборудование обеспечивает машинам маневренность, мобильность, высокие скорости (до 60...70 км/ч) и плавность передвижения. Пневмоколесный движитель состоит из ведомых и ведущих (приводных) колес, вращательное движение которых преобразуется в поступательное движение машины. У большинства строительных машин все колеса — ведущие. Количество колес зависит от допускаемой на каждое колесо нагрузки, условий и режимов работы машины, требуемых скоростей ее движения. Ходовые устройства строительных машин имеют обычно от 4 до 8 одинаковых взаимозаменяемых колес. Основным элементом каждого пневмоколеса является накачанная воздухом упругая резиновая шина, смонтированная на ободе. Шины могут быть камерными и бескамерными. В камерных шинах воздух накачивается в камеру , в бескамерных — между герметично соединенными покрышкой и ободом. Гусеничное ходовое оборудование характеризуется: - хорошим сцеплением с грунтом; - высокой тяговой способностью; - большой опорной поверхностью - низким удельным давлением на грунт (0,04...0,1 МПа); Определяющими в комплексе его высокую проходимость, и применяется в машинах, передвигающихся в условиях плохих дорог и бездорожья. Недостатки гусеничного оборудования — тихоходность (не более 10... 12 км/ч), сравнительно большая масса (30...40% от массы машины), сложность конструкции. Гусеничные машины обычно обслуживают объекты с большими объемами работ. Для транспортирования их с одного объекта на другой применяют пневмоколесные прицепы-тяжеловозы (трайлеры). В городском строительстве используют машины с двухгусеничным ходовым оборудованием. Гусеничный движитель состоит из гусеничной ленты (цепи 2 в виде шарнирно соединенных между собой звеньев (пластин, траков), огибающей приводное 1 и направляющее (натяжное) 9 колеса. Последние установлены на концах рамы 7. Нагрузки от машины передаются на нижнюю ветвь гусеничной ленты через движущиеся по ней опорные катки 6. Холостую верхнюю ветвь гусеницы поддерживают и предохраняют от провисания ролики 3. Натяжение гусеничной ленты регулируют винтовым натяжным устройством 8, перемещающим натяжное колесо Р. Для машин, работающих и передвигающихся на слабых, переувлажненных и заболоченных грунтах, применяют уширенно-удлиненные движители с увеличенной опорной поверхностью гусениц и удельным давлением на грунт 0,02...0,03 МПа. Рельсовое ходовое оборудование имеет башенные, козловые, мостовые и специальные стреловые самоходные краны, электротали — тельферы, сваебойные установки и др. Оно характеризуется простотой конструкции, небольшими .сопротивлениями передвижению, а также малыми маневренностью и скоростью передвижения. Основными элементами рельсового ходового устройства являются размещаемые на рельсах стальные колеса с гладким ободом с одной или двумя ребордами. Привод ведущих колес может быть общим от электродвигателя или двигателя внутреннего сгорания через систему валов и передач и индивидуального электродвигателя через редуктор. Приводы оборудуют управляемыми и автоматическими тормозами. Одно или несколько колес с общей рамой, двигателем, редуктором и тормозом образуют приводную ходовую тележку. Количество колес в тележке определяется действующей нагрузкой. Приводные и неприводные (без привода) ходовые тележки кранов шарнирно соединяются с опорной рамой и оборудуются противоугонными клещевыми захватами. 5.Определение строительной машины, структурная схема и назначение систем. Каждая машина состоит из сборочных единиц (элементов), выполняющих определенные функции при ее работе: силового оборудования (одного или нескольких двигателей) для получения механической энергии; рабочего оборудования для непосредственного воздействия на перерабатываемый материал и выполнения заданного технологического процесса; ходового оборудования (у переносных и стационарных машин оно отсутствует) для передвижения машины и передачи ее веса и рабочих нагрузок на опорную поверхность; передаточных механизмов (трансмиссии), связывающих рабочее и ходовое (у самоходных машин) оборудование с силовым; системы управления для запуска, останова и изменения режимов работы силового оборудования, включения, выключения, реверсирования, регулирования скоростей и торможения механизмов и рабочего органа машины; несущей рамы для размещения и закрепления на ней всех узлов и механизмов машины. Сборочные единицы многих строительных машин унифицированы. Машина представляет собой устройство, совершающее полезную работу с преобразованием одного вида энергии в другой. Она состоит из ряда механизмов различного назначения, объединенных общим корпусом, рамой или станиной. Механизмы включают в себя узлы в виде законченных сборочных единиц, представляющих совместно работающие детали. Деталь является частью машины, изготовленной в основном из однородного по наименованию и марке материала без использования сборочных операций. Их подразделяют на простые (заклепка, штифт, шпонка), сложные (распределительный вал, корпус редуктора и двигателя), общего (болты, валы, зубчатые колеса) и специального назначения, применяемые в различных видах машин (крюки кранов, корпуса ковшей экскаваторов, поршни насосов). 6.Пневмоколесное ходовое оборудование .Устройство шин и их типы. Как определить коэффициенты сопротивления качению и сцепления движителя ? Ходовое оборудование предназначено для передачи на опорную поверхность (грунт, дорожное покрытие, рельсы) веса машины и внешних нагрузок, действующих на нее при работе, передвижения машины на рабочих (при выполнении рабочего процесса) и транспортных скоростях, а также стопорения машины при работе. Пневмоколесное ходовое оборудование обеспечивает машинам маневренность, мобильность, высокие скорости (до 60…70 км/ч) и плавность передвижения. Пневмоколесный движитель состоит из ведомых и ведущих (приводных) колес, вращательное движение которых преобразуется в поступательное движение машины. У большинства строительных машин все колеса — ведущие. Количество колес зависит от допускаемой на каждое колесо нагрузки, условий и режимов работы машины, требуемых скоростей ее движения. Ходовые устройства строительных машин имеют обычно от до одинаковых взаимозаменяемых колес. Основным элементом каждого гшевмоколеса является накачанная воздухом упругая резиновая шина, смонтированная на ободе. Шины могут быть камерными и бескамерными. В камерных шинах (рис. 1.39, а) воздух накачивается в камеру 3, в бескамерных (рис. 1.39 б) — между герметично соединенными покрышкой и ободом 4. Взаимодействующий с дорогой протектор шин может иметь мелкий рисунок для дорог с твердым покрытием и крупный — для грунтовых дорог (рис. 1.39, в). Для повышения проходимости машин, работающих и передвигающихся по грунтам с пониженной несущей способностью, применяют шины с большой опорной поверхностью — широкопрофильные и арочные (рис. 1.39, г). Такие шины имеют высокие грунтоза-цепы, их удельное давление на грунт не превышает 0,05…0,14 МПа. Многие машины оборудуют устройствами для регулирования давления в шинах из кабины машиниста (каждой в отдельности или всех вместе) в зависимости от условий работы и передвижения машины. С уменьшением давления в шинах до 0,05…0,08 МПа увеличивается площадь контакта их с грунтом и соответственно уменьшается удельное давление на грунт и повышается проходимость машины; наряду с этим растут сопротивление движению машины и интенсивность износа шин. При движении в хороших дорожных условиях давление в шинах повышают до 0,5…0,7 МПа. На пневмоколеса опираются приводные (ведущие) и неприводные мосты, соединяемые с рамой машины жесткой, балансирной или упругой подвеской. Общее количество мостов обычно не превышает трех. Наиболее нагруженные мосты имеют сдвоенные пневмоколеса. Направление движения машины меняется путем поворота управляемых колес, поворотом мостов с колесами в плане, обеспечением различной скорости движения правых и левых колес и т.п. Привод ведущих колес может быть общим от механической трансмиссии машины, от самостоятельного ходового электродвигателя или низкомоментного гидромотора через систему передач и валов, а также индивидуальным от приводных ступичных блоков, встроенных в ступицу каждого колеса (мотор-колеса) и включающих электродвигатель или гидромотор, планетарный редуктор и тормоз. Скорость машины с мотор-колесами можно плавно регулировать в широком диапазоне в зависимости от дорожных условий и действующих на нее нагрузок. Каждое мотор-колесо может быть поворотным, за счет чего улучшается маневренность машины. Для разгрузки ходовых устройств строительных экскаваторов, стреловых самоходных кранов, бурильных и других машин при работе применяют выносные опоры-аутригеры. Масса пневмоколесных ходовых устройств составляет 10… 12% общей массы машины. 7.Какими способами можно уплотнять грунт? Каток с пневматическими шинами, его производительность. Для искусственного уплотнения грунтов, гравийно-щебеночных оснований и асфальтобетонных смесей при сооружении земляного полотна оснований и покрытий городских дорог, площадей и улиц применяют широкую номенклатуру машин, осуществляющих уплотнение укаткой, трамбовкой и вибрацией. При уплотнении частицы грунта или материала смещаются и укладываются более компактно за счет вытеснения жидкой и газообразной фаз, что приводит к уменьшению объема грунта (материала) и формированию более плотной и прочной его структуры. При укатке уплотнение происходит под статическим действием массы катка, перекатывающегося по уплотняемой поверхности. При трамбовании уплотнение грунта достигается динамическим воздействием падающего на уплотняемый материал груза. При вибрационном уплотнении вибрирующая масса сообщает колебательные движения частицам материала, в результате чего он получает большую подвижность и уплотняется. Укатка производится прицепными, полу прицепными и самоходными катками с металлическими (гладкими, решетчатыми и кулачковыми) вальцами и колесами с пневматическими шинами. Прицепные кулачковые катки (рис, 4.57, а) предназначены для послойного уплотнения связных и комковатых грунтов и имеют рабочие органы в виде кулачков 2 специальной формы, прикрепленных к съемным бандажам, надетым на полый барабан 1, заполняемый балластом (обычно песком). Налипающий на кулачки грунт счищается скребками. Катки выпускаются массой 6…30 т и различаются между собой размерами барабанов, числом, формой и величиной кулачков. Пневмоколесные катки осуществляют уплотнение смонтированными в один ряд на одной или двух осях пневмоколесами 4, пригруженными балластом 3, и могут быть прицепными (рис. 4.57, б), полуприцепными (рис. 4.57. е) и самоходными (рис. 4.57. г). Прицепные и полуприцепные катки применяют для послойного уплотнения связных и несвязных грунтов, самоходные — в основном для уплотнения дорожных основании и покрытий. Прицепные катки имеют общую массу (с балластом) 12,5...42,5 т, уплотняют полосу шириной 2,2...3,3 м при толщине уплотняемого слоя 0,25—0,5 м. Полуприцепные (к одноосным тягачам и пневмоколесным тракторам) катки производительнее и маневреннее прицепных и выпускаются массой 15,..45 т, Каждое пневмоколесо прицепных и полуприцепных катков нагружается индивидуальным балластом, имеющим свободное перемещение вместе с колесом в вертикальной плоскости. Это обеспечивает постоянную передачу давления на грунт каждым колесом независимо от неровностей уплотняемой поверхности. Полуприцепные катки движутся со скоростью до 11 км/ч и уплотняют полосу шириной до 2,6 м. Самоходные пневмоколесные катки имеют массу 16—30 т и уплотняют полосу шириной 1,6…2,2 м. Рабочим органом самоходного катка являются передние управляемые 5 и задние ведущие 6 пневмоколеса, взаимная расстановка которых позволяет получать сплошную полосу уплотняемого материала. При работе каток движется челночным способом со скоростью 3..4 км/ч. Рис. 4.57 Схемы машин для уплотнения грунтов и дорожных покрытий Эксплуатационная производительность уплотняющих машин непрерывного действия: где В — ширина полосы уплотнения, м; b — ширина перекрытия смежных полос уплотнения, м {b =0,1 м); — средняя рабочая скорость движения машины, км/ч; h — толщина слоя уплотнения, м; m— необходимое число проходов по одному месту; kв — коэффициент использования машины по времени (kв= 0,8...0,85). 8.Как устроены ременные передачи? Ременные передачи состоят из ведущего и ведомого шкивов (рис. 1.2, а), расположенных на определенном расстоянии друг от друга и охватываемых между собой одним или несколькими бесконечными ремнями. Усилие от ведущего шкива к ведомому передается за счет сил трения, возникающих между шкивами и ремнем вследствие натяжения последнего. Передаточное число ременных передач не является строго постоянным (за счет проскальзывания ремня) и определяется по формуле: u ≈ D1/D2 Достоинства ременных передач — простота конструкции и эксплуатации, небольшая стоимость, плавность и бесшумность работы, предохранение механизмов от перегрузки за счет проскальзывания ремня. Основной недостаток — непостоянство передаточного числа. 9. .Бетоносмесители принудительного(роторного действия). Стационарные цикличные бетоносмесители принудительнлго действия предназначены для приготовления жестких и подвижных бетонных смесей и строительных растворов. Материалы смешиваются путем принудительного воздействия на смесь лопастей, сообщающих частицам самые разнообразные траектории движения. К преимуществам бетоносмесителей принудительного действия по сравнению с гравитационными относятся большие активность и качество процесса перемешивания, предотвращение комкования смеси, к недостаткам – сложность конструкции и высокая металлоемкость машин, ограниченное применение крупных заполнителей, значительный износ рабочих поверхностей, боьшая энергоёмкость процесса перемешивания.Бетоносмесители принудительного действия разделяются на тарелчатые и лотковые. Тарелчатые бетоносмесители – это машины роторного типа с вертикально расположенными валами. Лотковые – двухзальные машины с двумя горизонтальными лопостными валами.Стационарные цикличные бетоносмесители роторного( тарелчатого) и лоткового типов используются в качестве встроенного оборудования в технологических линиях бетонорастворных заводов и установок, бетоносмесительных цехов заводов, сборных железобетонных изделий и пердназначенны для приготовления бетонных смесей и строительных растворов 1- рабочее пространство неподвижной чаши 2- лопасти 3- ротор 4- пружинные(рессорные) амортизаторы Лопасти закреплены на разном удалении от оси вращения, и расположены под разными углами к траектории своего движения. Такая схема установки лопастей, создающих при своём движении продольные и поперечные потоки смешиваемых компонентов, обеспечивает интенсивное и качественное перемешивание смесей любой консистенции. Амортизаторы позволяют лопастям поворачиваться при попадании между ними и днищем крупных кусков заполнителя. В смесительном устройстве помимо смешивающих лопастей имеются наружная и внутренняя очистные лопасти, прикрепляемые к ротору жёстко. Внутренняя поверхность чаши футерована износостойкой сталью. В донной части чаши имеется разгрузочный люк, перекрываемый затвором с рычажным или пневматическим приводом. |