Пр. В. Ф. Петрова методика математического образования детей дошкольного возраста Краткий конспект
Скачать 1.18 Mb.
|
КАЗАНСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ ИНСТИТУТ ПСИХОЛОГИИ И ОБРАЗОВАНИЯ В.Ф. ПЕТРОВА Методика математического образования детей дошкольного возраста Краткий конспект лекций Казань-2013 Петрова В.Ф. Методика математического образования детей дошкольного возраста / Каз.федер.ун-т. – Казань, 2013. – 203 с. В предлагаемых лекциях изучаются теоретические основы и современные технологии формирования и развития у детей дошкольного возраста элементарных математических представлений. С учетом государственного образовательного стандарта уровня дошкольного образования раскрываются актуальные вопросы содержания, методов, средств, форм обучения элементам математике детей дошкольного возраста. Особое внимание уделяется рассмотрению игровой технологии формирования и развития элементарных математических представлений дошкольников. Рассматриваются особенности восприятия детьми дошкольного возраста количественных и числовых представлений, величины, формы, пространства и времени. Подробно освещаются методические требования к организации непосредственно образовательной деятельности детей по формированию элементарных математических представлений в дошкольной образовательной организации. Подготовленный материал можно изучать самостоятельно, выполняя предлагаемые задания и проводя самоконтроль усвоения материала. Принято на заседании кафедры педагогики и методики дошкольного образования Протокол № 1 от 3.09.2013 © Казанский федеральный университет © Петрова В.Ф. Содержание Тема 1. Исторический обзор и современное состояние методики развития математических представлений у дошкольников 6 1.1. Теория и методика математического образования дошкольника как научная и учебная дисциплина 6 1.2. Исторические этапы становления и развития «Теории и методики математического образования дошкольника 9 1.3.Вопросы для самопроверки 14 1.4.Задания для практики 15 1.5. Глоссарий по теме 16 1.6. Использованные информационные ресурсы 16 Тема 2. Теоретические основы формирования и развития математических представлений у дошкольников 17 2.1 Основные математические понятия 18 2.2. Психолого-педагогические понятия, используемые данной наукой 22 2.3. Вопросы для самопроверки 35 2.4. Задания для практики 36 2.5.Глоссарий по теме 37 2.6.Использованные информационные ресурсы 38 Тема 3. Содержание математического развития дошкольников 39 3.1. Проблема содержания математического развития ребенка дошкольного возраста в психолого-педагогической литературе 39 3.2. Структура содержания математического развития дошкольника 41 3.3. Представление содержания математического развития дошкольника в основных общеобразовательных программах 42 3.4. Вопросы для самопроверки 54 3.5. Задания для практики 56 3.6. Глоссарий по теме 57 3.7.Использованные информационные ресурсы 57 Тема 4. Особенности и методика формирования и развития количественных и числовых представлений у дошкольников 58 4.1. Развитие у детей представлений о множестве 58 4.2. Развитие у детей дошкольного возраста представлений о числе 65 4.3.Этапы формирования количественных представлений. Дочисловой этап и обучение счету 68 3 4.4.Формирование количественных и числовых представлений в старшем дошкольном возрасте 77 4.5. Вопросы для самопроверки 87 4.6. Задания для практики 88 4.7. Глоссарий по теме 89 4.8. Использованные информационные ресурсы 90 Тема 5. Особенности и методика формирования и развития представлений дошкольников о размерах предметов 91 5.1. Величина и ее измерение 91 5.2. Величины, с которыми знакомятся дошкольники 92 5.3. Значение ознакомления дошкольников с величиной 93 5.4. Особенности восприятия величины детьми раннего и дошкольного возраста 94 5.5. Задачи и содержание формирования представлений о величине предметов в дошкольном возрасте 98 5.6. Задачи и методика ознакомления детей младшего дошкольного возраста с величиной предметов 105 5.7. Дальнейшее развитие представлений о величине в старшем дошкольном возрасте 107 5.8. Задачи и методика обучения измерению протяженностей, жидких и сыпучих веществ 112 5.9. Вопросы для самопроверки 117 5.10. Задания для практики 117 5.11. Глоссарий по теме 118 5.12. Использованные информационные ресурсы 119 Тема 6.Формирование у детей дошкольного возраста геометрических представлений 120 6.1. Особенности восприятия формы предметов и геометрических фигур 120 6.2. Задачи и содержание ознакомления детей с формой предмета 123 6.3. Методика формирования представлений о форме предметов в разных возрастных группах 125 6.4. Вопросы для самопроверки 130 6.5. Задания для практики 131 6.6. Глоссарий по теме 132 6.7. Использованные информационные ресурсы 132 Тема 7.Особенности и методика формирования и развития пространственных представлений у дошкольников 133 4 7.1. Содержание понятия «пространство» 134 7.2. Особенности восприятия пространства дошкольниками 135 7.3. Содержание и методика работы по развитию пространственных представлений у дошкольников разных возрастных групп 139 7.4. Вопросы для самопроверки 148 7.5. Задания для практики 149 7.6. Глоссарий по теме 149 7.7. Использованные информационные ресурсы 150 Тема 8. Особенности и методика формирования и развития представлений о времени у дошкольников 151 8.1. Время и особенности его восприятия детьми 152 8.2. Содержание представлений о времени у детей дошкольного возраста 155 8.3. Пути и средства развития представлений о времени у дошкольников 155 8.4. Вопросы для самопроверки 161 8.5. Задания для практики 161 8.6. Глоссарий по теме 162 8.7. Использованные информационные ресурсы 162 Тема 9. Проектирование процесса математического развития детей дошкольного возраста 163 9.1. Основные понятия проектирования математического развития детей 164 9.2. Предметно-развивающая среда как условие эффективного математического развития ребенка 164 9.3. Современные требования к отбору содержания, средств, методов и приемов, стимулирующих активность и направленных на развитие детской самостоятельности и инициативности 179 9.4. Интеграция разных видов деятельности в процессе формирования и развития математических представлений 190 9.5. Формы организации детской деятельности по развитию математических представлений 196 9.6. Вопросы для самопроверки 198 9.7. Задания для практики 198 9.8. Глоссарий по теме 199 9.9. Использованные информационные ресурсы 200 Глоссарий 201 5 Тема 1. Исторический обзор и современное состояние методики развития математических представлений у дошкольников. Аннотация. В данной теме раскрывается значение математического образования дошкольников в свете современных требований общества. Рассматриваются основные задачи и содержание учебной дисциплины. Влияние психолого-педагогических исследований на развитие методики. Исследование проблем формирования математических представлений у дошкольников. Общая характеристика основных этапов развития методики в ретроспективе. Ключевые слова: цель, задачи, предмет, объект исследований теории и методики математического образования дошкольников, этапы развития методики. Методические рекомендации. Изучая эту тему, студенты должны понять содержание и сущностные характеристики каждого этапа развития методики; научиться доказывать состоятельность современных взглядов на формирование и развитие математических представлений дошкольников, опираясь на исторические факты, методические системы прошлого; овладеть умениями устанавливать связи и зависимости в историческом процессе становления теории и методики формирования математических представлений в дошкольном возрасте. Для изучения этой темы студентам необходимо обратиться к хрестоматии «Теории и технологии математического развития детей дошкольного возраста /Сост. З.А. Михайлова, Р.Л. Непомнящая, М.Н. Полякова. – СПб,2006. После ознакомления с содержанием лекции необходимо выполнить практические задания. 1.1. Теория и методика математического образования дошкольника как научная и учебная дисциплина Теория и методика математического образования дошкольников» является самостоятельной научной и учебной дисциплиной. Первоначально она существовала в рамках дошкольной педагогики, но накопив значительный эмпирический опыт, а также достаточно большой объем научной информации, постепенно превратилась в самостоятельную отрасль знаний. В системе педагогических наук она 6 призвана способствовать интеллектуальному и всестороннему развитию ребенку с учетом неповторимости, уникальности, поддержки индивидуальных потребностей и интересов¸ ориентации на природный потенциал каждого ребенка. Предметом исследования дисциплины как научной области является изучение основных закономерностей процесса формирования и развития у дошкольников математических представлений и проектирование, осуществление на этой основе эффективных технологий развития и воспитания, способствующих познавательному, личностному развитию ребенка. Задачи, решаемые дисциплиной: - научное обоснование целей, содержания, форм, методов предматематической подготовки в основных общеобразовательных программах дошкольного образования, требований к уровню развития количественных, пространственных, временных и др. представлений детей в разных возрастных группах; -разработка и внедрение в практику современных эффективных, в том числе и компьютерных, технологий математического образования дошкольников; -реализация преемственности в формировании основных математических понятий в детском саду и школе; - разработка содержания и технологий, в том числе компьютерных, подготовки высококвалифицированных кадров, способных осуществлять математическое развитие детей с учетом отечественных и зарубежных достижений науки в разных формах дошкольного образования; -разработка на научной основе методических рекомендаций родителям по развитию математических представлений у детей в условиях семьи. Теоретическую базу изучаемой дисциплины составляют не только общие, исходные положения философии, педагогики, психологии, математики и других наук. К ним относятся: 7 - государственные документы по вопросам образования в РФ и РТ; -научные исследования и публикации, в которых отражены основные результаты научных поисков (статьи, монографии, сборники научных трудов и т.п.); -программно-методические документы; -методическая литература (статьи, пособия для воспитателей, родителей и т.п.); - инновационный педагогический опыт по развитию математических представлений в детском саду и семье, опыт и идеи передовых педагогов. Методика математического развития дошкольников постоянно развивается, совершенствуется и обогащается результатами научных исследований и инноваций. Регулярно выполняются и защищаются кандидатские и докторские диссертации. Дисциплина связана со многими науками и, прежде всего, с теми, которые изучают разные стороны личности ребенка, процесс его воспитания и развития. Наиболее тесная связь с дошкольной педагогикой. Эта дисциплина дает знание о принципах, условиях, содержании, методах, средствах, формах организации педагогического процесса в детском саду. Частные методики позволяют осуществлять интеграцию в обучении дошкольников: объединение математики и теории и методики развития речи, теории и методики физического воспитания, теории и методики музыкального воспитания и др.способствует более полному усвоению математических представлений ребенком. Подготовка к усвоению математики в школе не может осуществляться без связи с методикой начального обучения математике. Наиболее продуктивными являются технологии, разработанные в системе детский сад – школа. Обучение математике должно строиться с учетом закономерностей развития познавательной деятельности, личности ребенка, что является предметом изучением психологических наук. Восприятие, представление, мышление, речь не только функционируют, но и интенсивно развиваются в процессе обучения. 8 Психологические особенности и закономерности восприятия ребенком множества предметов, чисел, пространства, времени служат основой при разработке методики формирования и развития математических представлений. Психология определяет возрастные возможности детей в усвоении знаний и умений, а также указывает пути сопровождения индивидуального маршрута математического развития ребенка. Рациональное построение процесса обучения связано с созданием оптимальных условий на основе анатомо-физиологических особенностей маленьких детей. Закономерности протекания физиологических процессов у дошкольников служат основой для определения форм, места и длительность обучения для каждого возраста детей. Особо следует выделить связь с информатикой. Сегодня разработаны специальные программы по информатике для дошкольников. Организуются специальные компьютерные среды для обучения детей математике. Связь с различными науками создает теоретическую базу методики развития математических представлений. 1.2. Исторические этапы становления и развития «Теории и методики математического образования дошкольника» В развитии теории и методики развития математических представлений можно выделить исторические этапы становления. Первый этап – эмпирическое развитие методики. Вопросы математического развития детей своими корнями уходят в классическую и народную педагогику. Различные считалки, пословицы, поговорки, загадки, потешки были хорошим материалом в обучении детей счету, позволяли сформировать у ребенка понятия о числах, форме, величине и т.д. Позднее на этом этапе произошло выдвижение идеи о необходимости математического развития детей дошкольного возраста. Выдающиеся мыслители прошлого (Я.А Коменский, И.Г. Песталоцци, К.Д. Ушинский, Л.Н. Толстой), видные деятели (М. Монтессори, Ф. Фребель) осознавали, что без предварительной математической подготовки детям будет трудно осваивать школьную программу. 9 Второй этап – Начальный этап становления теории и методики математического развития дошкольников. Определение содержания, методов и приемов работы с детьми, дидактических материалов. Исторически этот этап относится к 20-30 годам 20го века. Большую роль сыграли отдельные педагоги-исследователи: Е.И. Тихеева, Ф.Н. Блехер, Л.В. Глаголева и др.), «школ» и направлений сенсорного воспитания (М. Монтесори, Л.АВ. Венгер). С начала 20 века в России начала создаваться научно- обоснованная дидактическая система обучения дошкольников математике. Ее начальный этап – начало 20 века – 40-е годы 20 века. В это время в дореволюционной России методические пособия адресовывались, как правило, одновременно семье и д/с, в них родители и воспитатели знакомились с содержанием обучения математике детей. В 1912 голу выходит пособие В.А.Кемниц «Математика в д/с»: игры, беседы, упражнения, изучение чисел 1-10, действий с ними, форм, величин, измерения, части и целого. До 1939 года в д/с Ленинграда детей обучали счету по методике Л.В.Глаголевой, в которой она рекомендовала опираться на обе господствующие в то время теории: восприятия числа путем счета и путем образа. Она пропагандировала разнообразие методов: • лабораторный (отработка практических действий с использованием наглядных материалов) • исследовательский (поиск детьми ситуаций применения знаний, аналогичных изучаемым) • иллюстративный (закрепление умений в продуктивной деятельности) • наглядный • игра. Кроме того, Глаголева раскрыла приемы формирования представлений о величинах, измерении, делении целого на части. Третий этап – Создание научно обоснованной дидактической системы формирования элементарных математических представлений в дошкольном возрасте: определение содержания, методов и приемов работы с детьми, дидактических материалов. Этот этап продолжался с 50х годов 20 века. А.М. Леушина изучала теорию и методику развития 10 количественных и числовых представлений у детей в процессе обучения. Четвертый этап – Психолого-педагогические исследования 60-70 годов 20 века. Изучались закономерности становления представлений о числе, развития счетной деятельности, вычислительной деятельности. Обосновывалась необходимостью начинать обучение детей с раннего возраста, с восприятия множеств предметов, с последующим обучением счету, выделению отношений между числами. Разрабатывались дидактические материалы, пособия, игры. Это были исследования психологов: И.А Френкеля, Л.Ф. Яблокова, Н.А. Менчинской, Н.Н. Лежавы, Г.С. Костюка. Педагогов: А.М. Леушиной, Н.Г. Бакст. В 70-80 годы проведены исследования по отдельным проблемам методики (Т.В. Тарунтаева, В.В. Данилова, Г.А. Корнилова, Т.Д. Рихтерман). Пятый этап – современное состояние теории и методики математического развития детей дошкольного возраста. С 80х годов 20 века до настоящего времени. Современное состояние теории и методики развития математических представлений у детей дошкольного возраста сложилось в 80-90 годы и первые годы нового столетия под влиянием развития идей обучения детей математике, а также реорганизации всей системы образования. Уже в 80 годы начали обсуждаться пути совершенствования как содержания, так и методов обучения дошкольников математике. В качестве негативного момента отмечалась ориентировка на выработку у детей предметных действий, в основном связанных со счетом и простейшими вычислениями, без должного уровня их обобщенности. Такой подход не обеспечивал подготовку к усвоению математических понятий в дальнейшем обучении. Специалисты изучали возможности интенсификации и оптимизации обучения, способствующие общему и математическому развитию ребенка, отмечали необходимость повышения теоретического уровня осваиваемых детьми знаний. Это требовало реконструкции программы обучения. Начались поиски путей обогащения содержания обучения. Решение этих сложных задач осуществлялось по-разному. 11 ВЗГЛЯДЫ НА МАТЕМАТИЧЕСКОЕ РАЗВИТИЕ ДЕТЕЙ ПЕДАГОГОВ XVI – XIX ВЕКОВ Педагог. Книга. Содержание обучения. Методические подходы. Я.А.Коменский. Материнская школа. 1592 – 1670 г.г. * Счет до 5, до 10, до 20. *Сравнение чисел. *Различение четных - нечетных чисел. *Различение размеров: большой - маленький, длинный - короткий, широкий - узкий. *Различение геометрических фигур: круг, линия, крест. *Знакомство с мерами: дюйм, четверть, пядь. *Измерение, сравнение величин. Использование природного материала. Постепенность («ничто не воспринимается с таким трудом как число»). Выполнение практических действий. Понимание выполняемых действий. Обучение с трех лет. Обучение в игре и через игру. И.Г.Песталоцци. Как Гертруда учит своих детей. 1746 -1827 г.г. *Освоение счета, образования числа, арифметических действий. *Изучение состава числа из единиц. Осознание реальных отношений, которые являются основой всякого вычисления. Широкое использование наглядности. Многократные повторения, упражнения. К.Д.Ушинский. О первоначальном обучении счету. 1824 – 1871 г.г. *Счет до 10 вперед и назад. *Знакомство с дробными числами. *Счет парами, по 4, по 5, по 8, по 10. Постепенность и последовательность обучения на основе прочного усвоения прежнего материала. Применение 12 *Знакомство с понятием «половина». *Освоение арифметических действий. полученных знаний на практике. Использование конкретной наглядности (природный, дидактический материал). Формирование навыков (свободное пользование действиями). Л.Н.Толстой. Азбука. 1872 г.. *Счет до 100 в прямом и обратном порядке. *Устное сложение и вычитание, умножение и деление. Понимание выполняемых действий, осознанное освоение арифметики. Обучение осторожно, не торопясь. Не зубрежка, а объяснение каждого действия. Избегать упрощений и сообщений правил, активизация мысли ребенка. Ф.Фребель. Воспитание человека. 1782 – 1852 г.г. *Обучение счету. *Группировка однородных предметов. *Рассматривание и созерцание чисел. *Ознакомление со свойствами разных материалов – сенсорное развитие (глина, песок, вода, бумага). *Развитие мелкой моторики (плетение, проколы, вырезывание, Видеть мир в гармонии и красоте. Учиться у природы. Наблюдение за окружающим, понимание и наблюдение числа. Использование природных материалов. Соединение действия и слова. Активные действия самого ребенка. 13 раскрашивание). *Знакомство с геометрическими фигурами и геометрическими телами. *Развитие навыков конструирования, пространственного моделирования (использование полуколец). Прочное освоение знаний на основе многократных повторений. Отсутствие зубрежки. М.Монтессори. Дом ребенка. 1870 – 1952 г.г. *Изучение нумерации, счет предметов. *Освоение арифметических действий и состава числа через размен денег (сольдо). *Сравнение длин. *Сравнение чисел. Использование жизненных ситуаций в процессе обучения. Знакомство с монетами и действиями с ними. Использование специальных дидактических средств и специальной среды: бруски с цветными делениями, счетные ящички, цветные бусы и др. Многократное повторение упражнений. Использование различных анализаторов для выявления свойств предметов. 1.3. Вопросы для самопроверки 1.Какую цель и задачи выполняет научная дисциплина «Теория и методика математического образования дошкольников»? 2.Каковы истоки современной «Методики…»? 3. Какие этапы прошла в своем развитии дисциплина? 4.Каковы различия во взглядах Е.И. Тихеевой и Ф.Н. Блехер? 14 5. Какой вклад в развитие дисциплины внесла А.М. Леушина? А.А. Столяр? 6. Какие проблемы математического развития ребенка дошкольного возраста решает современная дисциплина? 1.4. Задания для практики Практические задания к теме 1 Семинар |