Главная страница
Навигация по странице:

  • Стратегии обхода вирусами иммунологического контроля

  • Иммунопатология Иммунный ответ на вирусные антигены может вызывать повреждения тканей

  • Принципы культивирования вирусов.

  • Методика титрования и расчёта титра вируса в ООЕ и БОЕ, в единицах 50%-го инфекционного действия.

  • Методы уничтожения, инактивации и консервации вирусов.

  • Механизм персистенции вирусов в клетках. Персистенция.

  • литическая стадия

  • Неспецифические факторы противовирусной защиты организма. 1. Механические барьеры и бактерицидные факторы кожи

  • Макро- и микрофаги, представляющие

  • Гуморальные бактерицидные и бактериостатические факторы

  • Окончательный диагноз на основе обнаружения и идентификации вирусов в организме больных животных.

  • Вирусология. вирь. Вакцин требует знаний структурных и функциональных особенностей вирусных антигенов, различаемых иммунной системой организма. Вирусными антигенами


    Скачать 2.43 Mb.
    НазваниеВакцин требует знаний структурных и функциональных особенностей вирусных антигенов, различаемых иммунной системой организма. Вирусными антигенами
    АнкорВирусология
    Дата14.04.2022
    Размер2.43 Mb.
    Формат файлаdoc
    Имя файлавирь.doc
    ТипДокументы
    #473988
    страница7 из 31
    1   2   3   4   5   6   7   8   9   10   ...   31

    Защитные механизмы с участием Т- и В-клеток

    При отсутствии Т-клеток организм-хозяин весьма восприимчив к атакам вирусов. Так, у бестимусных мышей с врожденным отсутствием зрелых Т-клеток вирус простого герпеса, введенный в кожу, вызывает распространяющееся поражение и в конце концов, проникая в центральную нервную систему, гибель животных. Чтобы защитить этих мышей, достаточно вскоре после заражения перенести им HSV-специфичные Т-клетки. Важное значение Т- и В-клеток, противодействующих вирусным инфекциям, будет рассмотрено ниже.

    Антитела и комплемент способны ограничить распространение вируса и предотвратить повторную инфекцию

    Антитела могут нейтрализовать инфекционность вирусов

    Если вирусу удается преодолеть барьеры врожденного иммунитета, он вызывает развитие адаптивного иммунного ответа с появлением цитотоксических Т-клеток, хелперных Т-клеток и противовирусных антител. Антитела служат главным препятствием для распространения вируса в другие клетки и ткани, особенно для проникновения его в кровоток. В лимфоидной ткани слизистых оболочек образуются преимущественно антитела класса IgA, предотвращающие повторную инфекцию.

    Антитела могут быть направлены против любого вирусного антигена, синтезируемого в инфицированной клетке, однако сдерживание инфекции обеспечивают только те из антител, которые специфичны к гликопротеинам, экспрессированным на оболочке вирусов или на мембране инфицированных клеток. Механизмы гуморального противовирусного иммунитета могут быть различными. Так, способ устранения инфекционное вирусных частиц зависит от их локализации - внеклеточной или внутриклеточной.О действии in vivo защитных механизмов свидетельствует то, что инъекция моноклональных вирус-нейтрализующих антител весьма эффективно угнетает репродукцию вирусов. Присутствие в кровотоке нейтрализующих вирус антител - это и важный фактор предотвращения повторной инфекции.

    Комплемент участвует в нейтрализации внеклеточных вирусов некоторых видов

    Комплемент также способен повреждать оболочку вируса - осуществлять виролиз. Некоторые вирусы непосредственно вызывают активацию комплемента по классическому или альтернативному пути. Тем не менее комплемент не рассматривают как главный фактор зашиты против вирусов, поскольку при недостаточности компонентов системы комплемента не отмечено предрасположенности к тяжелым вирусным инфекциям у человека.

    Антитела мобилизуют комплементи/или эффекторные клетки для разрушения инфицированных вирусами клеток организма

    Действие антител, помимо нейтрализации внеклеточных вирусов, состоит в том, что они вызывают разрушение инфицированных вирусами клеток, активируя систему комплемента. В результате его активации происходит сборка лизирующего мембрану комплекса и лизис зараженных клеток. Комплемент - зависимый цитолиз возможен лишь при высокой плотности экспрессии вирусных антигенов на клеточной мембране. В противоположность этому, для лизиса по механизму АЗКЦ необходимо присутствие на поверхности клетки-мишени лишь 103 молекул IgG - такое количество обеспечивает связывание с ней З К-клеток. Эти клетки связываются с нагруженной антителами мишенью через FcyRIll и быстро разрушают ее посредством перфоринов. Насколько важен in vivo каждый из этих механизмов, пока трудно понять. Лучшее доказательство в пользу АЗКЦ получено на мышах при изучении защитного эффекта противовирусных моноклональных антител; не проявляя нейтрализующей активности in vitro, они оказались способны защитить С5-дефицитных животных при введении им высокой дозы вируса.

    Т-клетки участвуют в формировании и действии противовирусного иммунитета несколькими путями

    В иммунитете к вирусным инфекциям Т-клетки выполняют разнообразные функции. Образование антител в ответ на большинство антигенов зависит от тимуса, поскольку для переключения изотипа и созревания аффинности необходимо участие Т-клеток CD4+. Кроме того, эти клетки помогают в индукции цитотоксических Т-клеток CD8+, а также в привлечении макрофагов в очаг вирусной инфекции и в их активации.

    Цитотоксические Т-клетки CD8+

    Это главная Т-клеточная система для осуществления в организме противовирусного иммунологического надзора, и действует она весьма эффективно и избирательно. Цитотоксические Т-клетки CD8+, рестриктированные по антигенам МНС класса I, скапливаются в очагах размножения вирусов и разрушают инфицированные ими клетки. Данный механизм иммунологического надзора, по-видимому, весьма важен, так как фактически все клетки тела экспрессируют молекулы МНС класса 1.

    Процессинг и презентация вирусных белков

    Вероятно, любой вирусный белок может быть процессирован в цитоплазме АПК с образованием пептидов, которые затем транспортируются к эндоплазматическому ретикулуму и ассоциируют с молекулами МНС класса I. Для организма-хозяина это создает определенные преимущества, так как белки вируса, экспрессируемые клеткой в начале цикла его размножения, становятся доступными для Т-клеточного распознавания задолго до появления нового поколения вирусных частиц. Например, Т-клеточный иммунитет к цитомегаловирусной инфекции у мыши специфичен в отношении наиболее раннего вирусного белка рр89. Его протективный эпитоп определен как пептид Lb, состоящий из девяти аминокислотных остатков и презентируемый молекулой МНС класса I. Иммунизация мышей рекомби-нантным вирусом коровьей оспы, несущим ген рр89, полностью защищает их от инфекции CM V. Делеция участка Д З К, кодирующего нанопептид Ld, лишает белок рр89, экспрессируемый вирусом коровьей оспы, протективной активности.

    Важность Т-клеточных механизмов в противовирусном иммунитете in vivo установлена различными способами:

    * путем адоптивного переноса антигенспецифичных субпопуляций или клонов Т-клеток зараженным животным для проверки на способность устранения вируса;

    * на животных, лишенных Т-клеток CD4+ или CD8+ путем введения специфических моноклональных антител, и

    * на мышах, избирательно лишенных эмбриональных генов CD4, CD8 и в2-микроглобулина методом генного нокаута.

    Как установлено, мыши, лишенные методом генного нокаута определенных субпопуляций лимфоцитов, сохраняют способность к иммунному ответу на вирусную инфекцию. Можно рассматривать это как хорошую иллюстрацию многократного функционального дублирования, вероятно свойственного иммунной системе. Например, Т-клетки CD4+ в отсутствие Т-клеток CD8+ могут компенсировать иммунологическую недостаточность и устранять инфекцию.

    Т-клетки CD4+способны выполнять важные эффекторные функции в иммунном ответе на вирусную инфекцию

    В иммунном ответе на инфекцию эпителиальных покровов, вызванную вирусом простого герпеса 1 типа, главной эффекторной клеточной популяцией служат Т-клетки CD4+. Они, как и в реакциях гиперчувствительности замедленного типа, мобилизуют и привлекают макрофаги, и это ускоряет ликвидацию вируса. Макрофаги служат важными участниками этого процесса.В качестве ключевых цитокинов в ответе на герпесвирусную инфекцию действует ИФу, необходимый для активации моноцитов, и фактор некроза опухолей, оказывающий ряд противовирусных эффектов, сходных с эффектами ИФу, но осуществляемых иными путями.

    При заражении вирусом кори в организме образуются цитотоксические Т-клетки CD4+, которые распознают и лизируют инфицированные вирусом клетки-мишени, экспрессирующие молекулы МНС класса II. Это указывает, что про-цессинг и презентация антигенов вируса кори происходят обычным способом - путем фагоцитоза и расщепления. Однако существует, предположительно, и другой, еще неизвестный механизм, посредством которого белки или пептиды вируса кори перемещаются из иитозоля в везикулы класса II.

    Стратегии обхода вирусами иммунологического контроля

    Вирусы со своей стороны обладают разнообразными свойствами защиты от распознавания антителами. Наиболее эффективно этому служит смена антигенов: в вирусных белках, которые обычно становятся мишенями для антител, происходит изменение иммунодоминантных областей. Антигенная изменчивость наблюдается у вирусов иммунодефицита человека и ящура, а также у вируса гриппа; в последнем случае она названа антигенным дрейфом и шифтом.Гуморальный иммунитет к этим вирусным инфекциям сохраняется лишь до появления нового сероварианта возбудителя, что не позволяет рассчитывать на долговременный эффект вакцинации.

    Антитела могут удалять вирусные антигены с плазматической мембраны клетки путем кэппин-га. Именно этот механизм, возможно, ограничивает развитие некоторых вирусов персистенцией внутри клеток. Герпесвирусы кодируют гликопротеины, связывающие IgG через Fc-фрагмент, т. е. обладают FcyR-ак-тивностью, которая нарушает активацию комплемента и блокирует действие противовирусных антител.

    Некоторые вирусы способны противодействовать эффекту интерферонов: они продуцируют короткие отрезки РНК, которые конкурируют за протеинкиназу и каким-то образом подавляют активацию этого фермента. Ряд вирусов кодирует белки, ингибирующие перенос молекул МНС класса I на плазматическую мембрану клетки. Это дает вирусу преимущество, помогая избежать распознавания цитотоксическими Т-клетками.

    Отдельные вирусы обладают генами белков, гомологичных цитокиновым рецепторам или даже самим цитокинам. Синтез и выделение из инфицированных клеток этих белков, в частности растворимых форм рецепторов к ИЛ-Йв, ФНО и ИФу, нарушают локальное действие опосредованных цитокинами защитных механизмов. Вирус Эпштейна-Барр, например, кодирует белок, гомологичный ИЛ-10 млекопитающих и имитирующий его активность in vitro. Полностью значение подобных продуктов вирусного генома in vivo еще предстоит выяснить.

    Иммунопатология

    Иммунный ответ на вирусные антигены может вызывать повреждения тканейНарушения, связанные с иммунными комплексами

    Иммунные комплексы могут появляться в различных жидкостях организма или на поверхности клеток, чаще всего при хронических, а также при персистентных инфекциях, вызванных, например, вирусами лимфоцитарного хориоменингита либо гепатита В. При избытке вирусного антигена антитела теряют способность нейтрализовывать вирусы; вместо этого они образуют иммунные комплексы, которые оседают в почках или в кровеносных сосудах других органов и вызывают там воспалительные реакции, чреватые повреждением тканей, например такие, как гломерулонефрит.

    Связывание вирусов антителами, лишенными нейтрализующей активности, иногда имеет еще одно необычное патологическое следствие: эти иммунные комплексы в результате взаимодействия с Fc-рецептором поглошаются макрофагами, в которых инфекционность вируса усиливается. Это можно наблюдать при инфекции, вызванной вирусом денге. С Fc-рецепторными взаимодействиями иммунных комплексов, вызывающими гиперактивацию системы комплемента, связан также патогенез геморрагической лихорадки и шокового синдрома денге. Повреждение тканей хозяина цитотоксическими Т-клеткамиПри любой вирусной инфекции некоторая часть тканевых повреждений вызвана Т-клеточной активностью. Иногда в эксперименте они настолько существ енны, что могут вызвать гибель животного. Яркий пример этого - поражение клеток центральной нервной системы мыши цитотоксическими Т-клетками при иммунном ответе на заражение LCMV.Удаление Т-клеток спасает животных от гибели; таким образом, именно Т-клетки, а не вирусы, повреждают ткани мозга. Подобный механизм предположительно действует в патогенезе хронического активного гепатита у человека.

    Вирусы способны инфицировать клетки иммунной системы

    Некоторые вирусы непосредственно инфицируют лимфоциты и макрофаги, вызывая патогенный эффект. Кроме того, иммунокомпетентные клетки служат для вирусов благоприятным местом персистенции. Вирусы в неинфекционной форме локализуются в покоящихся лейкоцитах, активация которых может вызвать и реактивацию вирусов с репликацией инфекционных вирионов.

    Вирус иммунодефицита человека инфицирует Т-клеткиCD4+

    Т-клетки и макрофаги поглощают ВИЧ вследствие того, что вирусный гликопротеин gpl20 связывается с маркером CD4 и с определенными рецепторами для хемокинов, CCR3 и CCR5. Подобным же образом ВИЧ проникает в любую другую антигенпрезентирующую клетку. Противовирусные антитела могут способствовать этому процессу, если клетка обладает Fc-рецептором. По сути это альтернативный способ внедрения вируса в фагоцитарные клетки или механизм, усиливающий проникновение, в том случае когда CD4 присутствует в малом количестве.

    Период отсутствия клинических симптомов при ВИЧ-инфекции варьирует у разных больных и может быть весьма длительным; примерно у половины инфицированных ВИЧ-инфекция не прогрессирует в СПИД в течение 10 лет. В этот латентный период инфекции возбудитель присутствует в организме в форме провируса, встроенного в геномную ДНК хозяина, и транскрипции вирусной ДНК не происходит. Активацию вируса и начало транскрипции могут вызвать многие факторы. Например, in vitro воздействие ФНО и ИЛ-6 на латентно инфицированные культуры Т-клеток приводит к повышенной продукции инфекционных вирионов. Этот феномен, вероятно, имеет место и in vivo, так как моноциты ВИЧ-инфицированных больных часто выделяют указанные цитокины в патологически высоком количестве. Возможно, существует цикл высвобождения ФНО и ИЛ-6, в определенной фазе которого происходит усиление транскрипции вирусных генов.Репликация вируса ведет к инфицированию все большего числа клеток и выделению все большего количества цитокинов, причем in vitro ее стимулируют не, только указанные, но и другие цитокины и лимфокины, а также митогены и форболовые эфиры. Элиминации вируса не происходит по различным причинам, в том числе из-за его латентной персистенции, мутирования и прогрессирующей иммунологической недостаточности.

    Вирусная инфекция может провоцировать аутоиммунные заболевания

    Вирусный патогенез аутоиммунных болезней имеет несколько механизмов.

    Индуцированное вирусами повреждение тканей.Некоторые вирусные инфекции вызывают повреждение тканей и последующую воспалительную реакцию, в результате которой начинают экспонироваться ранее «скрытые» собственные антигены; они могут пройти процессинг и быть презентированы клеткам иммунной системы. Это наблюдается, например, при инфекциях нервной системы, вызванных вирусом Тейлера и вирусом гепатита мыши, когда мишенями для антител и Т-клеток становятся компоненты миелиновой оболочки аксонов.

    Молекулярная мимикрияИммунная система распознает как «чужое» аминокислотную последовательность вирусного белка, который гомологичен одному из белков организма-хозяина. В результате происходит срыв иммунологической толерантности к собственным скрытым антигенам и последующая атака иммунной системы против тканей хозяина.

    1. Принципы культивирования вирусов.

    Для культивирования вирусов в лабораторных условиях используются следующие живые объекты: 1) культуры клеток (тканей, органов); 2) куриные эмбрионы; 3) лабораторные животные. I. Культуры клеток Наибольшее распространение имеют однослойные культуры клеток, которые можно разделить на первичные (первично трипсинизированные), полуперевиваемые (диплоидные), перевиваемые, трансфецированные. По происхождению они подразделяются на эмбриональные, опухолевые и из взрослых организмов; по морфогенезу — на фибробластные, эпителиальные и др. Первичные культуры клеток — это клетки какой-либо ткани человека или животного, способные культивироваться в виде монослоя на пластмассовой или стеклянной поверхности в специальной питательной среде, но не способные к длительному размножению. Срок жизни таких культур ограничен. В каждом конкретном случае их получают из ткани после механического измельчения, обработки протеолитическими ферментами и стандартизации количества клеток. Первичные культуры, полученные из почек обезьян, почек эмбриона человека, амниона человека, куриных эмбрионов, широко используются для выделения и накопления вирусов, а также для производства вирусных вакцин. Полуперевиваемые (диплоидные) культуры клеток — клетки одного генотипа, способные in vitro выдерживать до 50-100 пассажей, сохраняя при этом свой исходный диплоидный набор хромосом. Диплоидные линии фибробластов эмбриона человека используются как для диагностики вирусных инфекций, так и при производстве вирусных вакцин. Перевиваемые клеточные линии характеризуются бессмертием и гетероплоидным кариотипом. Источником перевиваемых линий могут быть первичные клеточные культуры (например, СОЦ — из сердца обезьяны циномольгус, ПЭС — из почек эмбриона свиньи, ВНК-21 — из почек однодневных сирийских хомяков; ПМС — из почки морской свинки и др.), отдельные клетки которых обнаруживают тенденцию к бесконечному размножению in vitro. Совокупность изменений, приводящих к появлению в клетках таких свойств, называют трансформацией, а клетки перевиваемых тканевых культур — трансформированными. Другой источник перевиваемых клеточных линий — злокачественные новообразования. В этом случае трансформация клеток происходит in vivo. Получены и наиболее широко в вирусологической практике применяются следующие линии перевиваемых клеток: HeLa — получена из карциномы шейки матки; Hep-2 — из карциномы гортани; Детройт-6 — из метастаза рака легкого в костный мозг; RH — из опухоли почки человека. Трансфецированные культуры клеток. Разработаны экспериментальные линии культур клеток методом трансфекции (переноса) генов вирусов, контролирующих биосинтез поверхностных антигенов. Такие культуры клеток экспрессируют поверхностный белок определенного вируса (HBs-антиген, gp120 и др.) на мембране клеток культуры. Такие культуры клеток используются с целью изучения иммунологических механизмов патогенеза вирусных инфекций, разработки химиотерапевтических и иммунобиологических препаратов. Для обеспечения жизнедеятельности культивируемых клеток необходимы питательные среды. По назначению они делятся на ростовые и поддерживающие. В ростовых питательных средах должно содержаться больше питательных веществ, обеспечивающих активное размножение клеток и формирование монослоя. Поддерживающие среды обеспечивают переживание клеток в уже сформированном монослое в период размножения в них вирусов. Широкое применение находят стандартные синтетические среды, например, синтетическая среда 199 и среда Игла. Независимо от назначения все питательные среды для культур клеток конструируются на основе сбалансированного солевого раствора. Чаще всего им является раствор Хенкса. Неотъемлемый компонент большинства ростовых сред — сыворотка крови животных (телячья, бычья, лошадиная), без наличия 5-10% которой размножение клеток и формирование монослоя не происходит. В состав поддерживающих сред сыворотка не входит. С целью предотвращения возможного роста микроорганизмов в питательные среды вносят антибиотики. Выделение вирусов в культурах клеток и методы их индикации При выделении вирусов из различных инфекционных материалов от больного (кровь, моча, фекалии, слизистые отделяемые, смывы из органов) применяют культуры клеток, обладающие наибольшей чувствительностью к предполагаемому вирусу. Для заражения используют культуры в пробирках с хорошо развитым монослоем клеток. Перед заражением клеток питательную среду удаляют и в каждую пробирку вносят по 0,1-0,2 мл взвеси испытуемого материала, предварительно обработанного антибиотиками для уничтожения бактерий и грибов. После 30-60 мин. контакта вируса с монослоем клеток удаляют избыток материала, в культуру клеток вносят поддерживающую среду и пробы оставляют в термостате до выявления признаков размножения вируса. Индикатором наличия вируса в зараженных таким образом культурах клеток может служить: 1) развитие специфической дегенерации клеток — цитопатическое действие вируса (ЦПД), имеющее три основных типа: кругло- или мелкоклеточная дегенерация; образование многоядерных гигантских клеток (симпластов); развитие очагов клеточной пролиферации, состоящих из нескольких слоев клеток; 2) обнаружение внутриклеточных включений, располагающихся в цитоплазме и/или в ядрах пораженных клеток; 3) положительная реакция гамагглютинации (РГА) или гемадсорбции (РГАдс); 4) феномен бляшкообразования: монослой зараженных вирусом клеток покрывается тонким слоем агара с добавлением индикатора нейтрального красного (фон — розовый). При наличии вируса в клетках образуются бесцветные зоны («бляшки») на розовом фоне агара. 5) при отсутствии ЦПД, ГА или ГАдс. можно использовать реакцию интерференции: исследуемая культура повторно заражается вирусом, вызывающим ЦПД. В положительном случае ЦПД будет отсутствовать (реакция интерференции положительная). Если в исследуемом материале вируса не было, наблюдается ЦПД. II. Выделение вирусов в куриных эмбрионах Для вирусологических исследований используют куриные эмбрионы 7- 12-дневного возраста. Перед заражением определяют жизнеспособность эмбриона путем овоскопирования. Живые эмбрионы при овоскопировании проявляют двигательную активность, хорошо виден сосудистый рисунок. Простым карандашом очерчивают границы воздушной камеры. Куриные эмбрионы заражают вируссодержащим материалом в асептических условиях, стерильными инструментами, предварительно обработав скорлупу над воздушным пространством йодом и спиртом. Методы заражения куриных эмбрионов могут быть различны: нанесение материала на хорион-аллантоисную оболочку, введение в амниотическую и аллантоисную полости или в желточный мешок. Выбор метода заражения зависит от биологических свойств вируса. Индикация вируса в курином эмбрионе производится по гибели эмбриона, положительной реакции гемагглютинации на стекле с аллантоисной или амниотической жидкостью, по образованию фокусных поражений («бляшек») на хорион-аллантоисной оболочке. III. Выделение вирусов на лабораторных животных Лабораторные животные используются для выделения вирусов из инфекционного материала, когда невозможно применить более удобные системы (культуры клеток или куриные эмбрионы). Используют преимущественно новорожденных белых мышей, хомяков, морских свинок, крысят. Заражают животных в соответствии с цитотропизмом вируса: пневмотропные вирусы вводятся интраназально, нейротропные — интрацеребрально, дерматотропные — на кожу. Индикация вируса основана на проявлении у животных признаков инфекционного заболевания, их гибели, характере патоморфологических и патогистологических изменений в тканях и органах, а также по положительной реакции гемагглютинации.

    1. Методика титрования и расчёта титра вируса в ООЕ и БОЕ, в единицах 50%-го инфекционного действия.

    Титр – это количество вируса, содержащегося в единице объема материала. Из локальных повреждений, вызываемых вирусами, наиболее известны бляшки и оспины на ХАО КЭ. Если имеются данные обратные то инфекционная активность вируса может быть измерена в бляшкообразующих единицах (БОЕ) или оспообразующих единицах (ООЕ) 1БОЕ = дозе вируса, способной вызвать образование одной бляшки, а одна ООЕ – одной оспины. Методы: заражают несколько КК или КЭ на ХАО. Высчитывают среднеарифметическое количество оспин или бляшек. Оно = БОЕ или ООЕ вируса. Рассчитывают сколько БОЕ или ООЕ приходится на единицу объема вируссодержащего материала. Это и есть титр. Т=n/Va, где n-сред арифметическое бляшек или оспин, а –разведение материала, V – введенная доза. Метод 50%-ного инфекционного действия. За единицу количества вируса принимается доза, которая способна вызвать инфекционный эффект у 50% зараженных. Число таких доз в единице материала и будет выражать титр вируса в этом материале. Готовят 10 кратное разведение исследуемого материала, затем одинаковыми дозами заражают равные группы живых тест объектов. Учитывают результат действия и находят в каком разведение вирус проявил свое действие на 50%. Если сразу такое разведение не найдено то оно рассчитывается по формуле Т=lgB – (b-50)/(b-a) *lgd, где В – разведение дающие инфекционный эффект более 50%, b – процент дающий инфекционный эффект более 50%, а – менее 50% d – кратность разведения. За 1ГАЕ принимается такая доза вируса, которая способна агглютинировать примерно 50% эритроцитов содержащихся в том же, что и вирус объеме 1% суспензии отмытых эритроцитов. Готовят ряд последовательных кратных разведений материала и к каждому разведению добавляют 1% суспензию. Реакция оценивается в крестах. Реакция с 2 крестами содержит 1ГАЕ, которая умножается на кратность разведения.


    1. Методы уничтожения, инактивации и консервации вирусов.

    В промышленное производство вирусных препаратов с нарастающей скоростью вовлекаются все новые и новые вирусные агенты. Подавляющее большинство новых объектов относится к классу так называемых «оболочечных вирусов». Наблюдается тенденция быстрого сокращения периода между открытием очередного возбудителя и организацией лабораторных и промышленных производств инактивированных препаратов.
    Требования по безопасности ужесточаются в связи с необходимостью во многих случаях приготовления концентратов вирусных антигенов. Следует отметить, что инактивация должна быть не только эффективной, но и максимально щадящей (селективной). Иными словами, сопутствующие изменения в структуре вирусных частиц и их компонентов должны быть минимальными. Однако механизм инактивирующих воздействий во многих отношениях недостаточно выяснен и их использование зачастую носит эмпирический характер.
    Так как вирионы в центре агрегатов, образованных клеточными и сывороточными компонентами, могут быть защищены от инактивации, разрушение и удаление агрегатов различными методами очистки вирусной суспензии является важным этапом перед инактивацией. При изготовлении цельновирионных не-реплицирующихся вакцин используют химические и физические методы инактивации вирусов.
    Химические методы инактивации вирусов
    Из химических соединений наиболее часто используют два главных типа инактиваторов: ретикулирующие (разрыхляющие) агенты и алкилирующие агенты.

    К ретикулирующим агентам относятся альдегиды, в том числе формальдегид, глютаральдегид и глицидальдегид, из которых наиболее часто используют формальдегид. К алкирующим агентам относятся бетапропиолактон, этиленимин и другие азиридины.

    Механизм действия инактивирующих агентов, вероятно, заключается в следующем: 1) взаимодействуя с нуклеиновыми кислотами, они делают невозможной их репликацию; 2) вызывают ретикуляцию белков.
    Механизм действия инактивирующих агентов лучше изучен применительно к белкам, чем к нуклеиновым кислотам, хотя в целом остается не полностью выясненным. Инактивация вирусов, кажется, основывается на двойном действии ретикуляции белков, взаимодействующих с клеточными рецепторами, и блокаде репликации нуклеиновых кислот. Необходимая концентрация инактивирующих агентов зависит, главным образом, от относительной концентрации белков и нуклеиновых кислот в инактивируемой среде. Температура и гомогенность инактивируемого субстрата также играют ключевую роль в кинетике инактивации вируса.
    Возможность обратимости изменений реактивных групп (аминогруппа лизина, фенольные ядра тирозина) необходимо учитывать, особенно в случае использования формальдегида.

    Полнота инактивации вируса должна определяться сразу после изготовления вакцины.
    Наиболее общепринятыми инактивирующими агентами являются формальдегид, бета-пропиолактон и этиленимин. Одним из преимуществ бета-пропиолактона, используемого для изготовления вакцины против бешенства, и этиленимина, применяемого в изготовлении вакцины против ящура, является то, что они полностью гидролизуются в течение нескольких часов с образованием нетоксичных продуктов.
    Формальдегид инактивирует вирусы благодаря высокой реакционной способности в отношении белков и нуклеиновых кислот. Он вступает в соединение не только с вирусными частицами, но и с многочисленными компонентами среды, в которую его добавляют.
    Механизм инактивации вирусов формальдегидом сложен и характеризуется двумя типами реакций. Взаимодействие формальдегида с нуклеиновой кислотой и белками вируса протекает, соответственно, по типу реакции первого и второго порядка. Наиболее существенна для инактивации первая, которая, однако, в значительной мере зависит от второй.
    Взаимодействуя с нуклеиновыми кислотами и белками, формальдегид реагирует в основном с аминогруппами. Присоединение формальдегида к аминогруппам пуринов и пиримидинов уничтожает матричную и информационную активность нуклеиновых кислот.
    Формальдегид с большей скоростью взаимодействует с аминогруппами аминокислот и белков с образованием метилольных производных, чем с азотистыми основаниями нуклеиновых кислот. Сложилось представление, что с белками и нуклеиновыми кислотами вирусов формальдегид реагирует в две стадии. Вначале, в результате взаимодействия формальдегида с амино- или иминогруппами, быстро образуются весьма нестабильные метилольные производные, а затем, в результате вторичных реакций — бисметиленовые производные.
    Продукты взаимодействия формальдегида с аминокислотами способны вступать в реакцию с нуклеиновыми кислотами значительно быстрее, чем сам формальдегид.
    Во второй стадии происходит медленное взаимодействие первичных продуктов реакции с другими группами белков, в результате чего образуются ковалентно связанные димеры полипептидов. При этом уплотняется белковая оболочка и уменьшается ее проницаемость. Вследствие этого снижается скорость инактивации вируса. Под влиянием формальдегида в вирионах клещевого энцефалита образовывались гликопротеиновые димеры и комплекс РНК с белками нуклеокапсида. Последний отличался высокой стабильностью и разрушался только РНКазой. Предполагается, что образование этого комплекса — основной механизм инактивации вируса. Гликопротеин, экстрагированный из инактивированного вируса, обладал нормальной антигенной и иммуногенной активностью.
    Следует отметить, что реакция формальдегида с аминогруппами обратима, то есть при удалении избытка реагента или разбавлении раствора активность нуклеиновой кислоты может быть восстановлена. Процесс взаимодействия вируса с формальдегидом зависит от таких факторов, как концентрация реагента, температура, рН среды.
    При оптимальных условиях инактивации взаимодействие формальдегида с белками многих вирусов не оказывает значительного влияния на их антигенные свойства. Однако ряд вирусов теряет значительную часть антигенной активности при инактивации формалином. Это особенно касается оболочечных вирусов и, прежде всего, вирусов кори и респираторно-синцитиального (PC) вируса. Например, инактивирован-ная формалином вакцина против PC-вируса вызывала образование антител к белку F, которые не подавляли его инфекционную и симпластообразующую активность. Более того, вакцинация приводила к осложнению течения болезни при последующем ее возникновении. Вероятно, под действием формалина изменяются эпитопы гликопротеина, ответственные за индукцию вируснейтрализующих антител.
    Это касается, прежде всего, поверхностного F белка, ответственного за протективный иммунитет. Однако многие из вирусов, которые относительно хорошо переносят инактивацию формалином, оказываются весьма чувствительными к изменениям ее условий. Повышение концентрации формальдегида в десять и более раз по сравнению с оптимальной (0,1%-ной) приводило к морфологическим изменениям поверхностного антигена вируса гепатита В и снижению его активности, а увеличение продолжительности обработки очищенного полиовируса сопровождалось значительным повреждением капсида некоторых вирионов. С целью смягчения повреждающего действия формальдегида на антигенность и иммуногенность вирусов стали применять стабилизирующие вещества. Установлено, например, что добавление арилдона (5,4 М) не влияет на инактивацию аттенуированных и вирулентных штаммов полиовируса формалином (1:4000, 37°С) и, в то же время, способствует сохранению иммуногенности за счет стабилизации D-антигена.
    Применяют следующие методы консервации вирусов:

    1. при хранении вирусного материала (кусочки органов или тканей) часто используют глицерин (50%-ный раствор на ИХН), который обладает бактериостатическим действием и в то же время защищает вирусы. При этом можно хранить несколько месяцев при 4С.

    2. чаще всего хранят вирусы в холодильниках, обеспечивающих температуру -20, -30, -70С. При этой температуре некоторые вирусы без добавки защитных веществ сравнительно быстро теряют инфекционность. Хорошее защитное действие при замораживании и хранении вирусов оказывает добавка: инактивированной сыворотки крови или обезжиренного молока или 0,5-1,5% желатина.

    3. Быстрая заморозка до минус 196С жидким азотом. Вирусы, чувствительные к низким значениям рН, следует замораживать в жидкостях, не содержащих однозамещенных фосфатов.

    4. Лиофилизация – высушивание в замороженном состояние в условиях вакуума – очень хороший способ консервирования. В лиофилизированном виде вирусы могут храниться несколько лет.




    1. Механизм персистенции вирусов в клетках.

    Персистенция. Некоторые вирусы могут переходить в латентное состояние (так называемая персистенция для вирусов эукариот или лизогения для бактериофагов — вирусов бактерий), слабо вмешиваясь в процессы, происходящие в клетке, и активироваться лишь при определённых условиях. Так построена, например, стратегия размножения некоторых бактериофагов — до тех пор, пока заражённая клетка находится в благоприятной среде, фаг не убивает её, наследуется дочерними клетками и нередко интегрируется в клеточный геном. Однако при попадании заражённой лизогенным фагом бактерии в неблагоприятную среду, возбудитель захватывает контроль над клеточными процессами так, что клетка начинает производить материалы, из которых строятся новые фаги (так называемаялитическая стадия). Клетка превращается в фабрику, способную производить многие тысячи фагов. Зрелые частицы, выходя из клетки, разрывают клеточную мембрану, тем самым убивая клетку. С персистенцией вирусов (например,паповавирусов) связаны некоторые онкологические заболевания.


    1. Неспецифические факторы противовирусной защиты организма.

    1. Механические барьеры и бактерицидные факторы кожи и слизистых оболочек, представляющие первую линию неспецифической защиты организма от разнообразных микроорганизмов. 
    - Большая часть микробов через неповреждённые кожу и слизистые оболочки глаз, воздухоносных путей, пищеварительного тракта (в силу особенностей их строения) не проникает. 
    - Некоторые микроорганизмы не проходят и через ненарушенные гематоэнцефалический, гематолабиринтный и другие внутренние барьеры, в том числе и через мембраны клеток. 
    - Протективную роль выполняет нормальное количество и соотношение микроорганизмов кожи и слизистых оболочек. Здоровая кожа и слизистые оболочки обладают бактерицидными свойствами. Это обусловлено наличием на их поверхности секретов, содержащих лизоцим, секреторные IgA и IgM, гликопротеины, жирные кислоты, молочную кислоту. 
    - Защитную (бактерицидную и бактериостатическую) роль выполняют также желудочный и кишечный соки.

    2. Макро- и микрофаги, представляющие важную линию защиты организма от разных возбудителей. 
    - Макрофаги (моноциты, клетки фон Купфера, клетки Лангерханса, гистиофаги, альвеолоциты и др.) способны эффективно захватывать и внутриклеточно разрушать различные микробы и повреждённые структуры. 
    - Микрофаги (гранулоциты: нейтрофилы, эозинофилы, базофилы, тромбоциты, эндотелиоциты, клетки микроглии и др.) в меньшей степени, но также способны захватывать и повреждать микробы. 
    - В фагоцитах в процессе всех стадий фагоцитоза микробов активизируется как кислородзависимая, так и кислороднезависимая микробицидные системы. 
    - Главные компоненты кислородзаеисимой микробицидной системы фагоцитов — миелопероксидаза, каталаза и активные формы кислорода (синглетный кислород — 02, радикал супероксида — 02, гидроксильный радикал — ОН, перекись водорода — Н202). 
    - Основные компоненты кислородонезависимой микробицидной системы фагоцитов — лизоцим (мурамидаза), лактоферрин, катионные белки, Н+ ионы (ацидоз), гидролазы лизосом.



    3. Гуморальные бактерицидные и бактериостатические факторы
    - лизоцим, разрушая мураминовую кислоту пептидогликанов стенки грамположительных бактерий, вызьшает их осмотический лизис; 
    - лактоферрин, изменяя метаболизм железа в микробах, нарушает их жизненный цикл и нередко приводит к их гибели; 
    - (3-лизины бактерицидны для большинства грамположительных бактерий;

    - факторы комплемента, оказывая опсонизирующее действие, активизируют фагоцитоз микробов; 
    - система интерферонов (особенно а и у) проявляет отчётливую неспецифическую противовирусную активность; 
    - деятельность как микроворсинок и железистых клеток слизистой оболочки воздухоносных путей, так и потовых и сальных желёз кожи, выделяющих соответствующие секреты (мокроту, пот и сало), способствует удалению из организма определённого количества различных микроорганизмов.


    1. Окончательный диагноз на основе обнаружения и идентификации вирусов в организме больных животных.


    Окончательный диагноз на вирусную болезнь в большинстве случаев может быть поставлен только с учетом результатов лабораторных исследований. В лабораторной диагностике вирусных болезней точность дианоза прежде всего зависит от правильности взятия материала (пробы) от больных и павших животных, его транспортировки, качества приготовления и техники исследования вирусного материала.


    Материал для исследования следует брать как можно быстрее после проявления четких признаков болезни или не позднее 1-2 ч. после клинической смерти или убоя (позже начинается бактериальное обсеменение, и по мере продолжения инфекционного процесса количества вируса может уменьшаться в результате воздействия защитным механизмов организма). При взятии материала для выделения вируса следует исходить из патогенеза предполагаемй инфекции ( входные ворота, пути распространения вируса в организме, места его размножения, клинические признаки и пути выделения). В лабораторию направляют тот материал , который с наибольшей вероятностью может содержать возбудителей болезни. При этом необходимо соблюдать следующие общие правила:


    • материал должен быть взят строго асептически


    • материал должен быть немедленно законсервирован ( помещен в термос с охлаждающей смесью или добавлением 50-%- ного стерильного глицерина), чтобы предотвратить разрушение вирусов;


    • материал удобнее брать в стерильные пробирки с резиновой пробкой или во флакончики из под антибиотиков. Для исследования вполне достаточно 5-10 г. материала;


    • на пробиркак должна быть не смываемая этикетка;


    • материал направляют с нарочным и сопроводительным письмом, в котором указываю хозяйство, вид больных животных, предварительный диагноз, вид и количество патологического материала, на что следует провести исследование, дату и фамилию врача.


    В зависимости от симптомов болезни, а значит, и локализации возбудителя от больного животного может быть взят следующий материал:




    • смывы со слизистой оболочки носа, глаз, с задней стенки глотки, прямой кишки и клаоки у птиц. Берут их стерильными ватными тампонами, которые погружают в пробирки или флаконы, содержащие 3-5 мл соответствующей жидкости ( раствор Хенкса, среды Игла, 199 и др.) с антибиотиками;


    • содержимое везикул, пустул, стенки везикул, корочки на коже;


    • фекальные массы непосредственно из прямой кишки;


    • кровь на выделение вируса и кровь для получения парных сывороток крови для обнаружения и определения титра антител.


    Для этой цели кровь берут дважды у одного и того же животного - в начале болезни и через 2-3 нед, т.е. в начале и в концце болезни.

    От трупов патологический материал должен быть взят не пожзднее 1-2 ч после клинической смерти или убоя животного.В качестве патологического материала берут кусочки органов, которые:




    • имеют выдимые отклонения от нормы;


    • могут быть поражены и содержать вирус на основании клинической картины болезни;


    • наиболее часто содержат вирус: селезенка, печень, легкие, почки, головной мозг, лимфатические узлы.


    В лаборатории часть материала берут для исследования, оставшуюся часть хранят на случай дополнительных исследований. Затем составляют план исследования присланного материала, которые включапет следующие задачи:




    написать администратору сайта