Главная страница
Навигация по странице:

  • 10.4 Растворы.

  • 10.5 Питательные среды.

  • 10.6 Посуда.

  • Клеточный геном и реализация генетической информации в нормальной клетке. Клеточный и гуморальный противовирусный иммунитет, их взаимодействие.

  • Типы вирусных инфекций

  • Врожденный антивирусный иммунитет

  • Вирусология. вирь. Вакцин требует знаний структурных и функциональных особенностей вирусных антигенов, различаемых иммунной системой организма. Вирусными антигенами


    Скачать 2.43 Mb.
    НазваниеВакцин требует знаний структурных и функциональных особенностей вирусных антигенов, различаемых иммунной системой организма. Вирусными антигенами
    АнкорВирусология
    Дата14.04.2022
    Размер2.43 Mb.
    Формат файлаdoc
    Имя файлавирь.doc
    ТипДокументы
    #473988
    страница6 из 31
    1   2   3   4   5   6   7   8   9   ...   31

    10.3 Контаминация культур клеток. Работа с культурами клеток, их использование в вирусологических и других исследованиях, в биотехнологии требуют постоянного контроля на отсутствие посторонних агентов (контаминантов). Контаминантами могут быть вирусы, бактерии, грибы, микоплазмы и клетки других клеточных культур. Микоплазмы – одни из наиболее частых контаминантов, особенно в перевиваемых линиях клеток. Своевременное выявление их, других микроорганизмов или вирусов в культуре клеток – важное условие поддержания высокого качества последней. Паспортизация стабильных клеточных линий предусматривает в качестве необходимого теста контроль на отсутствие микоплазмоконтаминации, что должно стать обязательным для всех лабораторий, где работают с культурами клеток.

    Резкое закисление питательной среды в культуральных флаконах и опалесценция ее могут быть следствием контаминации культур клеток микоплазмами. Для выявления последних используют следующие методы: посев на питательные среды, тест-культуры, цитологические, радиоавтографические и электронно-микроскопические.

    В случае контаминации клеточные культуры уничтожают, а культивирование возобновляют из резервных расплодок, хранящихся в жидком азоте. Только редкие и уникальные культуры подлежат деконтаминации.

    Предупредить размножение и подавить случайно попавшие в клеточную культуру бактерии удается с помощью противомикробных препаратов (антибиотиков и др.), добавляемых в ростовые среды непосредственно перед их использованием. Эти препараты следует строго дозировать и применять дифференцированно. Их использование – необходимое условие при возрастании риска контаминации в процессе получения первичных культур клеток при крупномасштабном суспензионном выращивании клеток, массовом производственном культивировании перевиваемых клеток, а также во всех случаях объединения клеточного материала.

    При работе с культурами клеток используют многие антимикробные (нетоксичные) препараты в оптимальных дозах, характер действия которых приведен в таблице 5. Выбор эффективного препарата или комплекса препаратов зависит от чувствительности к ним конкретных контаминантов.

    Таблица 5.

    Противомикробные препараты для культур клеток (Л. П. Дьяконов и др.)

    Препарат

    Чувствительные

    микроорганизмы

    Антимикробное

    действие

    Оптимальные концентрации для культур клеток

    (Ед/мл, мкг/мл)

    Пенициллин

    Б +

    Бактерицидное

    100,0

    Стрептомицин

    Б±

    Бактерицидное

    100,0

    Мономицин

    Б±, М

    Бактерицидное

    100,0

    Неомицин

    Б±, М

    Бактерицидное

    50,0

    Канамицин

    Б±, М

    Бактерицидное

    200,0

    Гентамицин

    Б±, М

    Бактерицидное

    200,0

    Полимиксин

    Б±

    Бактерицидное

    50,0

    Фурагин

    Б±

    Бактерицидное

    8,0

    Обозначения: Б+ – грамположительные бактерии; Б– -грамотрицательные бактерии; М – микоплазмы

    10.4 Растворы. Наиболее широко используют при работе с культурами клеток растворы Хенкса и Эрла, которые готовят на бидистилли-рованной воде с добавлением различных солей и глюкозы.

    Раствор Хенкса: на 1 л бидистиллированной воды 8,0 rNaCl, 0,4 г КС1, 0,1 г MgSO4-7H2O, 0,14 г СаС12, 0,06 г КН2РО4, 0,06 г NaH2PO4, 1,0 г глюкозы, 0,02 г фенолрота, 0,07 г NaHCOv

    Раствор Эрла: на 1 л бидистиллированной воды 6,8 г NaCl, 0,4 г КС1, 0,1 г MgSO4, 0,2 г СаС12, 0,125 г NaH2PO, 2,2 г NaHCO3, 1,0 г глюкозы.

    Эти сбалансированные солевые растворы используют для приготовления всех питательных сред, так как они обеспечивают сохранение рН, осмотическое давление в клетках и соответствующую концентрацию необходимых неорганических веществ. Кроме того, их применяют при различных манипуляциях с культурой клеток (отмывание от ростовых сред, разведение вируса и т. д.).

    При культивировании клеток применяют диспергирующие растворы трипсина и версена. Раствор трипсина (0,25%-ный на фосфатном буфере) используют для разделения кусочков тканей на отдельные клетки и для снятия слоя клеток со стекла. Раствор версена – натриевую соль этилендиаминтетрауксусной кислоты (0,02%-ный на растворе Хенкса) – используют для снятия клеток со стекла. Все растворы стерилизуют при соответствующих режимах.

    10.5 Питательные среды. Различают естественные и искусственные (синтетические и полусинтетические) питательные среды.

    Естественные среды состоят из смеси солевого раствора (Хенкса, Эрла), сыворотки крови (животных или человека), тканевого (эмбрионального) экстракта (эмбрионов кур, коров, человека), коровьей амниотической жидкости и т. д. Количество каждого компонента в разных примесях сред значительно варьирует. Используют эти среды редко.

    В настоящее время применяют в основном искусственные питательные среды. К полусинтетическим питательным средам относят ферментативные гидролизаты различных белковых продуктов: гидролизат лактальбумина, мышечный ферментативный гидролизат, фермснтативно-казеиновый дрожжевой гидролизат, гемогидролизат, аминопептид и др. Наиболее широко используют в вирусологической практике 5%-ный раствор гидролизата лактальбумина, 5%-ный и 2,5%-ный раствор гемогидролизата.

    Из синтетических сред наиболее широкое применение нашли среда 199 и среда Игла. В состав среды 199 входит более 60 компонентов: 20 аминокислот, 17 витаминов, компоненты нуклеиновых кислот, источники липидов, 8 минеральных солей и другие вещества. В состав среды Игла также входит не менее 60 компонентов, включающих аминокислоты, витамины, углеводы и т.д.

    Во все питательные среды и некоторые солевые растворы добавляют индикатор феноловый красный (0,002 %) для определения концентрации водородных ионов (рН). В принятой концентрации он не оказывает токсического воздействия на клетки и вирусы. При снижении рН среда желтеет, что позволяет определять момент ее закисле-ния продуктами метаболизма клеток до уровня, требующего замены среды на свежую; при сдвигах рН в щелочную сторону растворы принимают красно-малиновый цвет. При нейтральном значении рН (7,2– 7,4) цвет среды оранжево-красный. Для регулирования рН солевых растворов и питательных сред используют 7,5%-ный раствор бикарбоната натрия (NaHCO3) и 3%-ный раствор уксусной кислоты (СН3СООН). Для уничтожения микрофлоры перед использованием в среды добавляют антибиотики: пенициллин и стрептомицин по 100 ЕД/мл. Для подавления плесени используют натриевую соль нистатина по 100 мкг на 1 мл среды.

    Все питательные среды принято делить на две группы:

    - ростовые, обеспечивающие жизнь и размножение клеток. Они содержат 2–10 % сыворотки крови, применяются в первые дни культивирования клеток;

    - поддерживающие, обеспечивающие жизнедеятельность клеток, но не размножение их. Они не содержат сыворотки крови, используются обычно после заражения культуры клеток вирусами.

    Сыворотка крови крупного рогатого скота – обязательный компонент ростовых питательных сред. В ее состав входит ряд биологически активных веществ, необходимых для роста клеток in vitro. Содержащиеся в сыворотке активная фракция альбуминов и фетуин способствуют прикреплению клеток к поверхности стекла. В практической работе наибольшее применение нашли сыворотки как взрослого крупного рогатого скота, так и телят, получаемые на мясокомбинатах. Самая лучшая сыворотка для культуры клеток – сыворотка эмбрионов коров. При получении сыворотки следует соблюдать строгую стерильность. Каждая серия сыворотки проходит контроль на стерильность и токсические свойства по отношению к культурам клеток.

    10.6 Посуда. Качество посуды имеет важное значение для успешного культивирования клеток вне организма. Посуда должна быть стерильной, обезжиренной, не обладать токсическим действием. Для культивирования клеток используют пробирки, матрасы на 50, 100, 250, 500, 1000 и 1500 мл, роллерные колбы на 500, 1000, 2000 мл, различные пипетки, флаконы для питательных сред и растворов, колбы различной вместимости, воронки и др.

    Предложено много способов обработки посуды, и в каждой лаборатории применяют один из них, наиболее экономичный, удобный и дающий наилучшие результаты. При культивировании клеток особенно большие требования предъявляют к подготовке и стерилизации посуды, пробок и др. Во многих случаях неправильная их мойка и стерилизация служат причиной неприкрепления клеток к стеклу или быстрой дегенерации клеточного монослоя.

    Обработка стеклянной посуды состоит из нескольких этапов:

    1) инфицированную посуду погружают в 2–3%-ный раствор NaOH на 5–6 ч;

    2) споласкивают в 3–4 сменах водопроводной воды;

    3) замачивают (на ночь) в 0,3–0,5%-ном растворе порошка «Лотос», «Лоск» или мыла Б;

    4) тщательно моют с помощью ерша в теплом растворе порошка «Лотос» или «Лоск»;

    5) споласкивают в нескольких сменах (8–10 раз) водопроводной воды;

    6) споласкивают в дистиллированной воде, содержащей 0,5 % НС1;

    7) споласкивают 4–5 раз водопроводной водой и в трех сменах дистиллированной воды;

    8) сушат в сушильном шкафу;

    9) монтируют и стерилизуют в сушильном шкафу (180 °С, 3–4 ч), кроме резиновых пробок, или автоклавируют (при 200 кПа 1,5–2 ч).

    Всю новую посуду моют теплой водой с мылом, споласкивают водой и погружают на 3 ч в хромпик (100 г двухромовокислого калия на 1 л концентрированной серной кислоты), затем в течение 9 ч промывают в проточной воде и нескольких сменах дистиллированной воды, сушат, монтируют и стерилизуют. Старую, бывшую в употреблении посуду обрабатывают хромпиком лишь периодически и не более чем в течение 1 ч.

    Новые резиновые пробки кипятят 1 ч в 5%-ном растворе двууглекислой соды, затем промывают несколько раз горячей водопроводной водой и кипятят каждый раз по 1 ч в шести сменах дистиллированной воды. Пробки, бывшие в употреблении, автоклавируют или кипятят 1 ч. Очищают щеткой, прополаскивают несколько раз водопроводной и один раз дистиллированной водой. Затем кипятят в дистиллированной воде 1 ч, споласкивают в трех сменах дистиллированной воды, стерилизуют в автоклаве.

    Металлические инструменты моют горячей водой с мылом, промывают водопроводной и дистиллированной водой, стерилизуют кипячением в дистиллированной воде в течение 30 мин. Во время работы в стерильном боксе инструменты находятся в стакане с 96%-ным этиловым спиртом, перед использованием инструменты прожигают пламенем горелки.

    В последние годы получили широкое распространение и с успехом применя­ются в лабораториях пластмассовые флаконы, пробирки, чашки Петри и плас­тины с лунками, предназначенные для одноразового использования. В основ­ном такая посуда выпускается стерильной, готовой к использованию. Пластины с лунками обрабатывают этиловым спиртом и стерилизуют ультрафиолетовым светом.

    Для культуральных пробирок и флаконов выпускают пробки из нетоксичес­кой силиконовой резины. Обычные резиновые пробки и шланги перед исполь­зованием в работе с культурой ткани кипятят в 5 %-ном растворе углекислого натрия и споласкивают несколько раз в дистиллированной воде.

    1. Клеточный геном и реализация генетической информации в нормальной клетке.

    2. Клеточный и гуморальный противовирусный иммунитет, их взаимодействие.

    Типы вирусных инфекций

    Вирусы - это облигатные внутриклеточные паразиты, использующие для синтеза своих белков биохимический аппарат клетки-хозяина. Они чрезвычайно разнообразны по строению и организации генома - некоторые имеют РНК-геном, состоящий всего из нескольких генов, другие обладают ДНК-геномами с числом генов до двух сотен. Структурно вирус представляет собой просто белковый «футляр», в который упакована нуклеиновая кислота. Обнаружены и еще более простые формы живых организмов:

    * вироиды -возбудители болезней растений, состоящие только из нуклеиновой кислоты без белковой оболочки, и

    * прионы - «инфекционные белки», ассоциированные с дегенеративными неврологическими болезнями животных и человека, включая скрейпи, спонгиозные энцефалопатии крупного рогатого скота и болезнь Крейцфельдта-Якоба.

    Вирусы прикрепляются к клеткам хозяина, связываясь со специфическими клеточными рецепторами. Этой специфичностью обусловлен тропизм данного вируса к определенному виду-хозяину или типу клеток. После проникновения вируса в клетку происходит его раздевание - дезагрегация белкового капсида с высвобождением нуклеиновой кислоты. Затем начинается транскрипция и синтез вирусных белков, репликация вирусного генома и, наконец, сборка и созревание нового «поколения» вирусных частиц. Выйдя в межклеточное пространство, они инфицируют близлежащие клетки и ткани. В зависимости от вида вируса и особенностей метаболизма клетки-хозяина этот процесс может различаться в деталях. Так, пикорнавирусам для образования новых вирусных частиц требуется около 8 ч, а ДНК-содержащему цитомегаловирусу человека - до 48 ч.

    Механизмы заражения хозяина, персистениии в тканях и патогенеза инфекции широко вирьируют среди различных вирусов. Как правило, вирусы проникают во внутреннюю среду организма через слизистые оболочки. Другой, очень эффективный путь их прямого проникновения в кровоток - через поврежденную кожу, например при укусе насекомого или уколе инъекционной иглой. Размножение вирусов обычно происходит в эпителиальных покровах; вслед за этим в некоторых случаях вирусы проникают в кровь, что приводит к их распространению и инфицированию других тканей. Выздоровление может означать полное устранение вируса из организма-хозяина. Однако некоторые вирусы способны оставаться в организме в скрытой форме после затухания острой инфекции и в какой-то момент реактивироваться с образованием новых инфекционных вирусных частиц. Другие вирусы персистируют в инфекционной форме, несмотря на иммунный ответ хозяина. При таких заболеваниях, как скрейпи и болезнь Крейцфельдта-Якоба, вовсе не бывает острой стадии; их возбудители персистируют в организме, что сопровождается медленной инфекцией, и вызывают проявления болезни спустя многие годы после заражения. В отличие от истинных вирусных, прионовые инфекции не стимулируют ни иммунного ответа, ни продукции интерферонов.

    Врожденный антивирусный иммунитет

    Ранняя стадия инфекции, как правило, состоит в противоборстве вируса с защитными системами организма-хозяина. Самый первый защитный барьер - это препятствующие внедрению вирусов кожные покровы и слизистые оболочки организма. В случае нарушения их целостности в действие вступают механизмы экстренной неспецифической защиты - интерфероны, НК-клетки и макрофаги.

    Интерфероны подавляют репродукцию вирусов

    Известно три типа интерферонов:

    * ИФсс - лейкоцитарный интерферон, кодируемый у человека семейством генов, расположенных в хромосоме 9;

    * МЦв - фибробластный интерферон, кодируемый единственным геном, расположенным в хромосоме 9, и

    * ИФу - иммунный интерферон, кодируемый единственным геном, расположенным в хромосоме 12.

    Инфицирование клетки вирусом вызывает синтез ИФсс/в. Под действием интерферонов активируются защитные механизмы соседних клеток, обеспечивая их устойчивость к вирусной инфекции.Активация затрагивает гены ряда белков, в том числе двух, обладающих прямой антивирусной активностью. Это протеинкиназа, которая фосфорилирует сс-субъединицу инициирующего трансляцию фактора eIF-2 и тем самым инактивирует его, блокируя в результате синтез вирусных белков, и другой фермент -2,5-олигоаденилатсинтетаза, активирующая латентную в обычных условиях эндонуклеазу, способную разрушать вирусные РНК.

    Существуют также другие, более специфичные механизмы антивирусного действия интерферонов. Например, белок Мх угнетает первичную транскрипцию генов вируса гриппа, но почти или вовсе не действует на прочие вирусы. ИФу, как и другие типы интерферонов, ингибирует размножение вируса в клетках, но, кроме того, усиливает специфический иммунный ответ, стимулируя повышенную экспрессию молекул МНС класса I и II, а также сильно активируя макрофаги и НК-клетки. О важном значении интерферонов в поддержании противовирусной резистентности организма в целом свидетельствует повышенная восприимчивость к вирусным инфекциям у мышей после введения им антител против интерферонов.

    Нормальные киллеры лизируют клетки организма, инфицированные вирусами

    Активные НК-клетки появляются уже через двое суток после заражения организма-хозяина вирусом. Они служат главным эффекторным механизмом сопротивления герпесвирусной, в частности цитомегаловирус-нои, инфекции. При отсутствии или уменьшении их активности, например у больных с синдромом Чедиака-Хигаши или у мышей с мутацией beige, наблюдается повышенная восприимчивость к вирусу цитомегалии. Пока не ясно, какие молекулы на поверхности инфицированных вирусом клеток организма распознаются НК-клетками. Однак о известно, что интенсивность поражения клеток-мишеней находится в обратной зависимости от уровня экспрессии ими молекул МНС класса I. г-Интерферон повышает функциональную активность НК-клеток. Благодаря этому они собираются в очагах инфекции уже в активированном состоянии. Главным образом, НК-клетки осуществляют реакцию антителозависимой клеточной цитотоксичности.
    1   2   3   4   5   6   7   8   9   ...   31


    написать администратору сайта