Вопросы к экзамену по патологической физиологии Общая патология Патологическая физиология как наука и ее место среди других дисциплин. Задачи и методы исследования патологической физиологии и ее значение в подготовке будущего врача
Скачать 1.32 Mb.
|
Патология паращитовидных желез. Гипер- и гипопаратиреоз. Фиброзная остеодистрофия. Причины возникновения. Основные клинические проявления и патогенез. Гипофункция околощитовидных желез. Выпадение функции околощитовидных желез ведет к развитию паратиреопривной тетании. В эксперименте ее воспроизводят удалением желез у собак и кошек. Через 1 — 2 сут после операции животные становятся вялыми, отказываются от пищи, у них отмечается жажда, снижение температуры тела, одышка. В результате уменьшения концентрации кальция в крови (с 2,25 — 2,99 до 1 — 1,25 ммоль/л) изменяется соотношение одновалентных (Na+, К+) и двухвалентных (Ca2+, Mg2+) ионов. Следствием этого является резкое повышение нервно-мышечной возбудимости. Появляется мышечная ригидность, нарушается походка. При этом наблюдаются множественные фибриллярные сокращения мышц всего тела, к которым затем присоединяются приступы клонических судорог. Клонические судороги переходят в тонические, наступает опистотонус (резкое выгибание туловища с запрокинутой головой). Судорожные сокращения могут распространяться и на внутренние органы (пилороспазм, ларингоспазм). Во время одного из таких приступов животное погибает. Одновременно с гипокальциемией в крови увеличивается содержание неорганического фосфора. Нарушения минерального обмена обусловлены торможением резорбции костной ткани, всасывания кальция в кишках и увеличением реабсорбции фосфатов в канальцах нефронов. В патогенезе паратиреопривной тетании определенное значение придают нарушению дезинтоксикационной функции печени. Кормление паратиореоидэктомированных собак мясом усиливает тетанию в результате недостаточного обезвреживания продуктов азотистого обмена, в частности ослабления способности печени превращать аммиак в мочевину. При наличии добавочных околощитовидных желез (у кроликов, крыс) или сохранении во время операции кусочка железы у паратиреоидэктомированных животных развивается хронический гипопаратиреоз, клиническая картина которого известна как паратиреопривная кахексия. Она характеризуется исхуданием, анорексией, повышенной нервно-мышечной возбудимостью, диспепсией и разнообразными трофическими расстройствами. Гипопаратиреоз у людей развивается чаще всего в результате случайного повреждения или удаления околощитовидных желез при оперативном вмешательстве на щитовидной железе. Относительная гипофункция желез отмечается при интенсивном росте, беременности, лактации и других состояниях, при которых повышена потребность организма в солях кальция. Патогенез и клиническая картина гипопаратиреоза у человека близки к наблюдаемым в эксперименте. Повышение нервно-мышечной возбудимости обнаруживают по появлению мышечных сокращений при раздражении двигательных нервов гальваническим током определенной силы, при сдавливании руки выше локтя или легком постукивании по коже в месте выхода лицевого нерва кпереди от наружного слухового прохода. У детей на первом-втором году жизни, обычно в сочетании с рахитом, нередко наблюдается спазмофилия — периодические судороги мышц, возникающие при повышении окружающей температуры и других неблагоприятных воздействиях. Большую опасность при этом представляет ларингоспазм, который может вызвать асфиксию и смерть. Гиперфункция околощитовидных желез. При повышенной секреции паратирина усиливается образование и активность остеокластов, осуществляющих резорбцию кости, и тормозится их дифференцировка в остеобласты, участвующие в новообразовании костной ткани. Наряду с этим повышается всасывание кальция в кишках, уменьшается обратное всасывание фосфатных ионов в канальцах нефронов, повышается образование растворимых солей кальция в костной ткани и нерастворимого фосфата кальция в различных органах, в том числе в почках (см. раздел XIV — "Нарушения водноэлектролитного обмена"). Гиперпаратиреоз у экспериментальных животных воспроизводят введением экстракта паращитовидных желез животных или очищенного паратирина. Под влиянием больших доз гормона уровень кальция в крови достигает 5 ммоль/л, концентрация неорганического фосфора снижается, усиливается выделение фосфора с мочой. Хотя паратирин и усиливает несколько канальцевую реабсорбцию ионов кальция, выведение их с мочой повышается за счет значительной гиперкальциемии. Возникают обезвоживание организма, рвота, лихорадка, острая недостаточность почек, ведущие животного к гибели. Экспериментальный хронический гиперпаратиреоз отличается от острой интоксикации паратирином. При этом наблюдается прогрессирующее разрежение костной ткани (остеопороз), отложение солей кальция в почках, легких, сердце и других внутренних органах вплоть до полного их обызвествления. Стенки сосудов становится плотными и ломкими, давление крови повышается. Животные погибают, как правило, от уремии. Происхождение гиперпаратиреоза у людей связывают с аденомой или гиперплазией околощитовидных желез. Развивающаяся при этом генерализованная фиброзная остеодистрофия характеризуется болью в мышцах, костях и суставах, размягчением костей, резкой деформацией скелета. Минеральные компоненты "вымываются" из костной ткани и откладываются в мышцах и внутренних органах (это явление образно называют перемещением скелета в мягкие ткани). Развиваются нефрокальциноз, сужение просвета канальцев нефронов и закупорка их камнями (нефролитиаз) и в итоге — тяжелейшая недостаточность почек. Вследствие известковых отложений в стенках магистральных сосудов нарушаются гемодинамика и кровоснабжение тканей. Нарушения функций нейрона и синаптической передачи. Денервационный синдром. Нарушение функций нервных клеток и проводников Важнейшими функциями нервной клетки являются генерирование потенциала действия, проведение возбуждения по нервным волокнам и передача его на другую клетку (нервную, мышечную, железистую). Функция нейрона обеспечивается протекающими в нем обменными процессами. Одним из назначений метаболизма в нейроне является создание асимметричного распределения ионов на поверхности и внутри клетки, что определяет потенциал покоя и потенциал действия. Обменные процессы поставляют энергию натриевому насосу, активно преодолевающему электрохимический градиент Na+ на мембране. Из этого следует, что все вещества и процессы, которые нарушают метаболизм и ведут к уменьшению выработки энергии в нервной клетке (гипоксемия, отравление цианидами, динитрофенолом, азидами и др.), резко угнетают возбудимость нейронов. Функция нейрона нарушается и при изменении содержания одно- и двухвалентных ионов в окружающей среде. В частности, нервная клетка полностью утрачивает способность к возбуждению, если поместить ее в среду, лишенную Na+. Большое влияние на величину мембранного потенциала нейрона оказывает также К+ и Са2+. Мембранный потенциал, определяемый степенью проницаемости для Na+, К+ и Cl- и их концентрацией, может поддерживаться только в том случае, если мембрана стабилизирована кальцием. Как правило, повышение Са2+ в среде, где находятся нервные клетки, ведет к их гиперполяризации, а его частичное или полное удаление — к деполяризации. Нарушение функции нервных волокон, т.е. способности проводить возбуждение, может наблюдаться при развитии дистрофических изменений в миелиновой оболочке (например, при дефиците тиамина или цианокобаламина), при сдавлении нерва, его охлаждении, при развитии воспаления, гипоксии, действии некоторых ядов и токсинов микроорганизмов. Как известно, возбудимость нервной ткани характеризуется кривой сила — длительность, отражающей зависимость пороговой силы раздражающего тока от его длительности. В случае повреждения нервной клетки или дегенерации нерва кривая сила — длительность значительно изменяется, в частности увеличивается хронаксия (рис. 25.1). Под влиянием различных патогенных факторов в нерве может развиться особое состояние, которое Н. Е. Введенский назвал парабиозом. В зависимости от степени повреждения нервных волокон различают несколько фаз парабиоза. При изучении явлений парабиоза в двигательном нерве на нервно-мышечном препарате видно, что при небольшой степени повреждения нерва наступает такой момент, когда на сильное или слабое раздражение мышца отвечает одинаковыми по силе тетаническими сокращениями. Это уравнительная фаза. По мере углубления альтерации нерва возникает парадоксальная фаза, т.е. в ответ на сильное раздражение нерва мышца отвечает слабыми сокращениями, в то время как умеренные по силе раздражения вызывают более энергичный ответ со стороны мышцы. Наконец, в последней фазе парабиоза — фазе торможения, никакие раздражения нерва не способны вызвать мышечное сокращение. Если нерв поврежден настолько, что утрачивается его связь с телом нейрона, он подвергается дегенерации. Основным механизмом, ведущим к дегенерации нервного волокна, является прекращение аксоплазматического тока и транспорта веществ аксоплазмой. Процесс дегенерации, подробно описанный Уоллером, заключается в том, что уже через сутки после травмы нерва миелин начинает отходить от узлов нервного волокна (перехватов Ранвье). Затем он собирается в крупные капли, которые постепенно рассасываются. Нейрофибриллы подвергаются фрагментации. От нерва остаются узкие трубочки, образованные нейролеммоцитами. Через несколько дней после начала дегенерации нерв утрачивает возбудимость. В разных группах волокон потеря возбудимости наступает в различные сроки, что, по-видимому, зависит от запаса веществ в аксоне. В нервных окончаниях дегенерирующего нерва изменения наступают тем быстрее, чем ближе к окончанию перерезан нерв. Вскоре после перерезки нейро-леммоциты начинают проявлять фагоцитарную активность по отношению к нервным окончаниям: их отростки проникают в синаптическую щель, постепенно отделяя терминали от постсинаптической мембраны и фагоцитируя их. После травмы нерва наступают изменения и в проксимальном отделе нейрона (первичное раздражение), степень и выраженность которых зависят от вида и интенсивности повреждения, его отдаленности от тела нейроцита, типа и возраста нейрона. При ранении периферического нерва изменения в проксимальном отделе нейрона, как правило, минимальны, и в дальнейшем нерв регенерирует. Наоборот, в центральной нервной системе нервное волокно дегенерирует ретроградно на значительном протяжении и нередко нейрон погибает. Роль нарушений медиаторного обмена в возникновении заболеваний ЦНС. Синапсы — это специализированные контакты, через которые осуществляется передача возбуждающих или тормозящих влияний с нейрона на нейрон или другую клетку (например, мышечную). У млекопитающих существуют главным образом синапсы с химическим типом передачи, при котором активность от одной клетки к другой передается с помощью медиаторов. Все синапсы делятся на возбуждающие и тормозящие. Основные структурные компоненты синапса и процессы, происходящие в нем, показаны на рис. 25.2, где схематично представлен холинэргический синапс. Нарушение синтеза медиатора. Синтез медиатора может быть нарушен в результате снижения активности ферментов, участвующих в его образовании. Например, синтез одного из медиаторов торможения — γ-аминомасляной кислоты (ГАМК) — может быть угнетен при действии семикарбазида, блокирующего фермент, катализирующий превращение глутаминовой кислоты в ГАМК. Нарушается синтез ГАМК и при недостатке в пище пиридоксина, являющегося кофактором этого фермента. В этих случаях в центральной нервной системе страдают процессы торможения. Процесс образования медиаторов связан с затратой энергии, которая поставляется митохондриями, присутствующими в большом количестве в нейроне и нервных окончаниях. Поэтому нарушение этого процесса может быть вызвано блокадой метаболических процессов в митохондриях и снижением содержания макроэргов в нейроне вследствие гипоксии, действия ядов и др. Нарушение транспорта медиатора. Медиатор может синтезироваться как в теле нервной клетки, так и непосредственно в нервном окончании. Образующийся в нервной клетке медиатор транспортируется по аксону в пресинаптическую часть. В механизме транспорта большую роль играют цитоплазматические микротрубочки, построенные из особого белка тубулина, близкого по своим свойствам к сократительному белку актину. По микротрубочкам к нервному окончанию проходят медиаторы, ферменты, участвующие в обмене медиаторов, и т.д. Микротрубочки легко распадаются под воздействием анестетиков, повышенной температуры, протеолитических ферментов, веществ типа колхицина и др., что может приводить к уменьшению количества медиатора в пресинаптических элементах. Например, гемохолин блокирует транспорт ацетилхолина в нервные окончания и тем самым нарушает передачу нервных влияний в холинэргических синапсах. Нарушение депонирования медиатора в нервных окончаниях. Медиаторы хранятся в пресинаптических пузырьках, в которых находится смесь молекул медиатора, АТФ и специфических белков. Предполагают, что пузырьки формируются в цитоплазме нейроцита, а затем транспортируются по аксону к синапсу. Некоторые вещества могут нарушать процесс депонирования медиатора. Так, например, резерпин препятствует накоплению в пресинаптических пузырьках норадреналина и серотонина. Нарушение секреции медиатора в синаптическую щель. Процесс выхода медиатора в синаптическую щель может нарушаться под действием некоторых фармакологических препаратов и токсинов, в частности столбнячного токсина, препятствующего выходу медиатора торможения глицина. Ботулинический токсин блокирует выброс ацетилхолина. По-видимому, в механизме секреции медиатора имеет значение сократительный белок тубулин, входящий в состав пресинаптической мембраны. Блокада этого белка колхицином угнетает выделение ацетилхолина. Кроме того, на секрецию медиатора нервным окончанием оказывают влияние ионы кальция и магния, простагландины. Нарушение взаимодействия медиатора с рецептором. Имеется большое количество веществ, влияющих на связь медиаторов со специфическими рецепторными белками, расположенными на постсинаптической мембране. Главным образом это вещества, обладающие конкурентным типом действия, т.е. легко вступающие в связь с рецептором. В их числе можно назвать тубокурарин, блокирующий Н-холинорецепторы, стрихнин, блокирующий рецепторы, чувствительные к глицину, и др. Эти вещества блокируют действие медиатора на эффекторную клетку. Нарушение удаления медиатора из синаптической щели. Для того чтобы синапс функционировал нормально, медиатор после его взаимодействия с рецептором должен удаляться из синаптической щели. Существует два механизма удаления: разрушение медиаторов ферментами, локализованными на постсинаптической мембране; обратный захват медиаторов нервным окончанием. Ацетилхолин, например, разрушается в синаптической щели холинэстеразой. Продукт расщепления (холин) снова захватывается пресинаптическим пузырьком и используется для синтеза ацетилхолина. Нарушение этого процесса может быть вызвано инактивацией холинэстеразы, например, с помощью фосфорорганических соединений. При этом ацетилхолин на длительное время связывается с большим количеством холинорецепторов, оказывая сначала возбуждающее, а затем угнетающее действие. В адренэргических синапсах прекращение действия медиатора происходит главным образом за счет обратного захвата его симпатическим нервным окончанием. При воздействии токсических веществ может нарушаться транспорт медиатора из синаптической щели в пресинаптические пузырьки. Этиология двигательных расстройств. Центральные и периферические параличи, их характеристика. Сокращения скелетных мышц, а также их тонус связаны с возбуждением а-мотонейронов, находящихся в спинном мозге. Сила сокращения мышцы и ее тонус зависят от количества возбужденных мотонейронов и частоты их разрядов. Мотонейроны возбуждаются прежде всего благодаря импульсации, поступающей к ним непосредственно от афферентных волокон чувствительных нейронов. Этот механизм лежит в основе всех спинальных рефлексов. Кроме того, функция мотонейронов регулируется многочисленными импульсами, поступающими к ним по проводящим путям спинного мозга от различных отделов мозгового ствола, мозжечка, базальных ядер и коры большого мозга, осуществляющих высший моторный контроль в организме. По всей видимости, эти регулирующие влияния воздействуют либо непосредственно на α-мотонейроны, повышая или понижая их возбудимость, либо опосредованно через систему Реншоу и фузимоторную систему. Система Реншоу представлена клетками, оказывающими тормозящее действие на мотонейроны. Активизируясь импульсами, поступающими прямо от α-мотонейронов, клетки Реншоу контролируют ритмичность их работы. Фузимоторная система представлена γ-мотонейронами, аксоны которых идут к мышечным веретенам. Возбуждение γ-мотонейронов приводит к сокращению веретен, что сопровождается увеличением-в них частоты импульсации, которая по афферентным волокнам достигает α-мотонейронов. Следствием этого является возбуждение α-мотонейронов и повышение тонуса соответствующих мышц. Двигательные расстройства возникают как при повреждении указанных отделов центральной нервной системы, так и при нарушении проведения импульсов по двигательным нервам и передачи импульсов с нерва на мышцу. Наиболее распространенной формой двигательных нарушений являются паралич и парез — потеря или ослабление движений вследствие нарушения двигательной функции нервной системы. Паралич мышц одной половины тела называется гемиплегией, обоих верхних или нижних конечностей — параплегией, всех конечностей — тетраплегией. В зависимости от патогенеза паралича тонус пораженных мышц может быть либо утрачен (вялый паралич), либо повышен (спастический паралич). Кроме того, различают паралич периферический (если он связан с повреждением периферического мотонейрона) и центральный (в результате поражения центральных двигательных нейронов). Двигательные расстройства, связанные с патологией концевой пластинки и моторных нервов. Нервно-мышечное соединение представляет собой холинэргический синапс. В нем могут возникать все те патологические процессы, которые были рассмотрены в разделе "Нарушения функций синапсов". Одним из наиболее известных примеров нарушения нервно-мышечной передачи в условиях патологии является миастения. Если больного миастенией попросить несколько раз подряд с силой сжать руку в кулак, ему это удастся только в первый раз. Затем с каждым последующим движением сила в мышцах его рук стремительно уменьшается. Такая мышечная слабость наблюдается во многих скелетных мышцах больного, в том числе мимических, глазодвигательных, глотательных и др. Электромиографическое исследование показало, что при повторных движениях у таких больных нарушается нервно-мышечная передача. Введение антихолинэстеразных препаратов в известной степени устраняет это нарушение. Этиология заболевания неизвестна. Для объяснения причин миастении были выдвинуты различные гипотезы. Одни исследователи предполагают, что в крови таких больных накапливаются курареподобные вещества, другие усматривают причину в избыточном накоплении холинэстеразы в области концевых пластинок, в нарушении синтеза или выделения ацетилхолина. Исследования последних лет показали, что у больных миастенией в сыворотке крови довольно часто обнаруживают антитела к ацетилхолиновым рецепторам. Блокада нервно-мышечного проведения может возникать за счет соединения антител с рецепторами. Удаление вилочковой железы в этих случаях приводит к улучшению состояния больных. При поражении двигательных нервов в иннервируемых мышцах развивается паралич (периферического типа), исчезают все рефлексы, они атоничны (вялый паралич) и с течением времени атрофируются. В эксперименте такой тип двигательных расстройств обычно получают путем перерезки передних спинномозговых корешков или периферического нерва. Особый случай представляет собой рефлекторный паралич, обусловленный тем, что при повреждении какого-либо чувствительного нерва импульсы, исходящие от него, могут оказывать тормозящее действие на мотонейроны соответствующей мышцы. |