Главная страница

патан лекции. Всякий активный процесс познания начинается со знакомства с реальным материальным субстратом, который предполагает получение ответа на вопрос что такое


Скачать 4.05 Mb.
НазваниеВсякий активный процесс познания начинается со знакомства с реальным материальным субстратом, который предполагает получение ответа на вопрос что такое
Анкорпатан лекции.doc
Дата20.02.2018
Размер4.05 Mb.
Формат файлаdoc
Имя файлапатан лекции.doc
ТипРеферат
#15725
страница24 из 104
1   ...   20   21   22   23   24   25   26   27   ...   104
Выделяют также патологическую гипертрофию. Патологическая гипертрофия возникает при отсутствии соответствующего стимула – увеличенной функциональной потребности. Миокардиальная гипертрофия, происходящая без видимой причины (при отсутствии гипертензии, пороков клапанов и врожденных болезней сердца), рассматривается как пример патологической гипертрофии и носит название гипертрофической кардиомиопатии.
ГИПЕРПЛАЗИЯ
Гиперплазия – увеличение размеров органа или ткани в результате увеличения числа составляющих их клеток. Гиперплазия наблюдается при стимуляции митотической активности клеток, что приводит к увеличению их числа.
Различают реактивную, или защитную гиперплазию, нейрогуморальную, или гормональную гиперплазию и заместительную компенсаторную при потере крови.
Реактивная, или защитная гиперплазия возникает в иммунокомпетентных органах – в тимусе, селезенке, лимфатических узлах, красном костном мозге, миндалинах, лимфатическом аппарате кишечника и др.
Причины этой гиперплазии разнообразны. Гиперплазия эритроцитарного ростка костного мозга может быть связана с повышенным разрушением эритроцитов (гемолитические процессы) или продолжительной гипоксией (проживание в высокогорных районах), миелоидного – с повышенной потребностью организма в нейтрофилах, например, при воспалении. Гиперплазия лимфатических узлов это, как правило, ответ на антигенную стимуляцию. Гиперплазия селезенки наблюдается при септических состояниях.
При гиперплазии селезенка увеличивается в размерах, приобретает дряблую консистенцию и, если провести по поверхности разреза ножом, дает соскоб пульпы. Лимфатические узлы увеличиваются в размерах, становятся сочными, розовато-красного цвета. Микроскопически отмечается разрастание иммунокомпетентных клеток. Костный мозг диафиза бедра при септических состояниях становится красным за счет гиперплазии клеток миелоидного ряда.
Гормональная гиперплазия возникает в органах-мишенях под действием гормонов. Она может наблюдаться и в норме. Например, гиперплазия молочной железы при беременности и лактации. Примерами гормональной гиперплазии в условиях патологии могут служить:
Гиперплазия эндометрия, которая возникает в результате увеличенной стимуляции эндометрия эстрогенами, особенно при ановуляторных менструальных циклах, когда отсутствует выработка прогестерона при склерокистозе яичников у молодых женщин и у женщин в климактерическом периоде. В слизистой оболочке развивается гиперплазия желез, иногда с кистозным расширением просвета - так называемая железисто-кистозная гиперплазия эндометрия. При этом возникают метроррагии - нерегулярные, частые чрезмерные маточные кровотечения.
Фиброзно-кистозная мастопатия также возникает в результате нарушения гормональной функции яичников, проявляется гиперплазией и перестройкой ацинусов и выводных протоков молочной железы. Эти участки железы приобретают вид плотных беловатых узлов и в клинике их необходимо дифференцировать с истинными опухолями.
Гиперплазия органов-мишеней часто сопровождается увеличением их функции. Так, при гиперплазии надпочечников вследствие чрезмерной секреции АКТГ наблюдается увеличенная секреция кортизола (синдром Кушинга).
Гиперплазия щитовидной железы (токсический зоб, болезнь Грейвса) возникает при увеличении количества ТТГ или при действии аутоантител, которые способны связаться с рецепторами к ТТГ на мембранах клеток щитовидной железы. Эутиреоидный зоб возникает при недостатке йода в воде, почве, может быть эндемическим.
Гиперплазия предстательной железы, часто возникающая в пожилом возрасте, сопровождается гиперплазией и железистой ткани, и стромы. Причина не известна, однако предполагают, что она происходит в результате снижения уровня андрогенов. Увеличение предстательной железы сопровождается застоем мочи, образованием камней, нередко развитием восходящей инфекции. При атрофии яичек в грудной железе мужчин развивается гиперплазия железистых долек, что приводит к увеличению размеров всей железы – отмечается гинекомастия (от греч. gyne – женщина, mastos – грудь).
РЕГЕНЕРАЦИЯ
Регенерация (от лат. regeneratio – возрождение) – восстановление структурных элементов ткани взамен погибших.
В биологическом смысле регенерация представляет собой приспособительный процесс, выработанный в ходе эволюции и присущий всему живому.
Классификация. Различают три вида регенерации:

физиологическую;

репаративную;

патологическую.
Клетки большинства органов и тканей продолжают делиться и дифференцироваться во время всей его жизни. В норме рост и дифференцировка управляются таким образом, чтобы поддерживалась нормальная структура специфической ткани. В тканях, которые характеризуются непрерывной потерей клеток (кожа, слизистая оболочка кишечника, кровь), лабильные стволовые, камбиальные клетки делятся, образующиеся клетки дифференцируются и заменяют потерянные в процессе нормальной жизнедеятельности клетки (физиологическая регенерация). Восстановление структуры может происходить на разных уровнях – молекулярном, субклеточном, клеточном, тканевом и органном, однако всегда речь идет о возмещении структуры, которая способна выполнять специализированную функцию. Регенерация – это восстановление как структуры, так и функции.
Репаративная, или восстановительная регенерация – это восстановление клеток и тканей взамен погибших в результате различных патологических процессов. Механизмы репаративной и физиологической регенерации едины, репаративная регенерация – это усиленная физиологическая регенерация. Однако, побуждаемая патологическими процессами, репаративная регенерация имеет некоторые качественные морфологические отличия от физиологической. Репаративная регенерация может быть полной и неполной.
Полная регенерация, или реституция, характеризуется возмещением дефекта тканью, которая идентична погибшей. Она развивается преимущественно в тканях, где преобладает клеточная регенерация.
При неполной регенерации, или субституции, дефект замещается соединительной тканью, рубцом. Субституция характерна для органов и тканей, в которых преобладает внутриклеточная форма регенерации, либо она сочетается с клеточной регенерацией. В таких случаях функция возмещается путем гипертрофии или гиперплазии окружающих дефект клеток.
Патологическая регенерация – это извращение регенераторного процесса, нарушение смены фаз пролиферации и дифференцировки. Патологическая регенерация проявляется в избыточном или недостаточном образовании регенерирующей ткани (гипер - или гипорегенерация). Примерами ее могут служить образование келоидных рубцов, избыточная регенерация периферических нервов (травматические невромы), избыточное образование костной мозоли при срастании перелома, вялое заживление ран (хронические трофические язвы голени в результате венозного застоя) и др.
Морфогенез регенераторного процесса складывается из двух фаз – пролиферации и дифференцировки. В фазу пролиферации размножаются молодые, недифференцированные клетки. Эти клетки называются камбиальными, стволовыми клетками или клетками-предшественниками. Деление клеток продолжается до тех пор, пока не будет заполнен дефект ткани. В фазу дифференцировки молодые клетки созревают, происходит их структурно-функциональная специализация.
Клетки организма на основании их регенераторной способности делятся на три группы – лабильные, относительно стабильные и постоянные.
Лабильные клетки (митотически активные клетки). Примеры лабильных клеток: базальные эпителиальные камбиальные клетки всех типов эпителия и гемопоэтические стволовые клетки в костном мозге.
Лабильные клетки обычно делятся активно в течение всей жизни, являясь источником для восстановления клеток, которые непрерывно погибают. Лабильные клетки имеют короткий G0 период (период отдыха или межмитотический период). Непрерывная потеря зрелых клеток данной ткани – непрерывный стимул для вхождения неактивных клеток в митотический цикл. Зрелые дифференцированные клетки в этих специфических тканях не могут делиться; их количество поддерживается делением их стволовых лабильных клеток.
Повреждение ткани, содержащей лабильные паренхиматозные клетки, сопровождается быстрой регенерацией. Например, хирургическое удаление эндометрия при кюретаже или физиологическая потеря эндометрия в течение менструации сопровождается полной регенерацией клеток от базального герминативного слоя в течение нескольких дней. Разрушение эритроцитов в периферической крови (гемолиз) стимулирует гиперплазию клеток-предшественников гемопоэза в костном мозге, что в результате приводит к регенерации разрушенных красных клеток крови. Регенерация в тканях с лабильными клетками происходит только тогда, когда после повреждения остается достаточное количество лабильных клеток. В примере, приведенном выше, чрезмерно усердный хирургический кюретаж эндометрия, при котором удаляется весь эндометриальный слой, включая базальный, приводит к невозможности регенерации. Заживление тогда происходит путем формирования рубца, что ведет к нарушениям менструального цикла и бесплодию. Еще пример: радиоактивное излучение или высокие дозы некоторых лекарств, могут уничтожить все клетки-предшественники гемопоэза в костном мозге и тогда регенерация невозможна, и это приводит к развитию апластической анемии.
Относительно стабильные клетки (обратимо постмитотические или “покоящиеся” клетки) – примерами относительно стабильных клеток являются паренхиматозные клетки наиболее важных железистых органов (печень, поджелудочная железа) и мезенхимальные клетки (фибробласты, эндотелиальные клетки). Относительно стабильные клетки обычно имеют длительный срок существования и поэтому характеризуются низкой митотической активностью. Они остаются в фазе G0 в течение длительного времени (часто годами), но сохраняют способность к делению, входя в митотический цикл по мере возникновения потребности. В отличие от лабильных клеток, которые являются недифференцированными клетками и делятся часто, а созревают и становятся функционирующими их дочерние клетки, относительно стабильные клетки дифференцированы и являются функционирующими клетками, которые возвращаются к делению только при необходимости. Хотя относительно стабильные клетки имеют длительную стадию отдыха, они могут быстро делиться при возникновении потребности, например, паренхиматозные клетки печени быстро восстанавливаются после некроза гепатоцитов.
Регенерация в тканях, образованных из относительно стабильных клеток, требует наличия достаточного количества жизнеспособной ткани для обеспечения регенерации паренхиматозных клеток, а также требует сохранности соединительнотканной основы ткани. Повреждения почек иллюстрируют потребность в сохранной соединительнотканной основе. При избирательном некрозе клеток канальцев почки (острая почечная недостаточность) с сохранением соединительнотканной основы почечных канальцев регенерация происходит быстро, и потерянные клетки заменяются путем деления выживших клеток канальцев. С другой стороны, когда происходит некроз и паренхимы, и соединительной основы ткани (инфаркт почки), регенерация невозможна и заживление происходит путем формирования рубца.
Постоянные клетки (необратимо постмитотические клетки). Примерами постоянных клеток являются нейроны в центральной и периферической нервной системе и клетки миокарда. Постоянные клетки не имеют никакой способности митотического деления в постнатальной жизни.
Повреждение постоянных клеток всегда сопровождается формированием рубца. Полная регенерация невозможна. Потеря постоянных клеток поэтому необратима и, если некроз обширный, это может приводить к нарушению функции органов.
РЕГЕНЕРАЦИЯ КРОВЕНОСНЫХ СОСУДОВ
Регенерация кровеносных сосудов протекает неоднозначно в зависимости от калибра. Регенерация сосудов микроциркуляторного русла – капилляров, венул, артериол – может происходить путем почкования или аутогенно.
При регенерации сосудов путем почкования в их стенке появляются боковые выпячивания за счет усиленно делящихся эндотелиальных клеток (ангиобласты, эндотелиобласты). Образуется эндотелиальный вырост, который превращается в тяж без просвета. Затем под давлением крови из “материнского” сосуда образуется капилляр. Другие элементы сосудистой стенки образуются за счет дифференцировки камбиальных клеток окружающей соединительной ткани.
Аутогенное новообразование сосудов состоит в том, что в соединительной ткани появляются очаги недифференцированных клеток. В этих очагах возникают щели, в которые открываются предсуществующие капилляры и изливается кровь. Молодые клетки соединительной ткани, дифференцируясь, образуют эндотелиальную выстилку и другие элементы стенки сосуда. Такой путь новообразования капилляров наблюдается в период эмбриогенеза и в опухолях.
Крупные сосуды не обладают достаточными пластическими свойствами. Поэтому при повреждении их стенки восстанавливаются лишь структуры внутренней оболочки, ее эндотелиальная выстилка. Элементы средней и наружной оболочек восстанавливаются за счет рубцевания.
РЕГЕНЕРАЦИЯ СОЕДИНИТЕЛЬНОЙ ТКАНИ
Процесс заживления дефекта ткани путем формирования рубца делится на несколько стадий.
Подготовка. На начальном этапе регенерации происходит удаление некротического детрита, то есть обломков всех погибших клеток, воспалительного экссудата, включая фибрин и кровь. Этот детрит разжижается лизосомными ферментами нейтрофилов, которые мигрируют в эту область. Разжиженный материал удаляется по лимфатической системе; любые остатки в виде частиц удаляются макрофагами путем фагоцитоза.
Разрастание грануляционной ткани знаменует конец первого этапа регенерации – фазы пролиферации клеток. Грануляционная ткань – высоко васкуляризированная соединительная ткань, составленная из заново сформированных капилляров и пролиферирующих камбиальных клеток соединительной ткани (малые и большие круглые, эпителиоидные клетки). Эти клетки мигрируют по ходу капилляров в поврежденную область. Формирующаяся грануляционная ткань заполняет поврежденную область по мере того, как некротический детрит удаляется. Пролиферация капилляров, фибробластов и других клеток в процессе заживления регулируется разнообразными факторами роста и ингибирующими факторами.
Макроскопически грануляционная ткань мягкая и пестрая (кажется розовой и “гранулярной”) из-за наличия многочисленных капилляров.
Микроскопически обнаруживается множество тонкостенных (образованных эндотелием) капилляров, окруженных недифференцированными клетками соединительной ткани. Пролиферирующие камбильные клетки соединительной ткани являются метаболически высоко активными, с большими ядрами и видимыми ядрышками; иногда видны фигуры митоза. При электронной микроскопии выявляется расширенный шероховатый эндоплазматический ретикулум в цитоплазме фибробластов - индикатор активного синтеза белка.
Через какое-то время – продолжительность зависит от степени повреждения – вся область заживления заменяется разрастающейся грануляционной тканью.
Синтез фибронектина. Фибронектин – гликопротеин (MВ 44,000) играет ключевую роль в формировании грануляционной ткани и выявляется в большом количестве в процессе заживления раны. На ранних стадиях он поступает из плазмы, а позже синтезируется фибробластами, макрофагами и эндотелиальными клетками в грануляционной ткани. Фибронектин хемотаксичен для фибробластов и ускоряет формирование капиллярных сосудов из эндотелиальных клеток.
Созревание. При созревании грануляционной ткани содержание коллагена прогрессивно увеличивается со временем. Коллаген – главный фибриллярный белок соединительной ткани. Он синтезируется фибробластами в форме предшественника – тропоколлагена (проколлаген), который имеет молекулярный вес 285,000 и по форме напоминает длинные нити. Во время или вскоре после секреции заключительное ферментативное удаление терминальной части цепи пептидов ведет к формированию нерастворимой молекулы фибриллярного коллагена. При световой микроскопии коллаген выявляется как фибриллярная масса, которая окрашивается в розовый цвет при обычной окраске гематоксилином и эозином и в зеленый или синий цвет – при окраске трихромовыми красителями. Молодые фибробласты в грануляционной ткани синтезируют коллаген III типа, который позже заменяется на I тип коллагена, имеющий более плотные перекрестные связи между цепями.
Молодой рубец состоит из грануляционной ткани, умеренного количества коллагена, большого числа капилляров и фибробластов. Он кажется розовым при макроскопическом исследовании из-за васкуляризации. По мере созревания рубца количество коллагена увеличивается, а клеток и сосудов становится меньше. Зрелый рубец составлен из бессосудистого скопления коллагена, между волокнами которого редко сохраняются клетки, вследствие чего он имеет белый цвет при макроскопическом исследовании.
Ткань рубца не является неактивной; в ней происходит непрерывное медленное удаление коллагена ферментом коллагеназой, которое сбалансировано синтезом нового коллагена фибробластами. Даже старые рубцы могут разрыхляться при нарушении нормальной активности фибробластов, например, при дефиците витамина C или введении кортикостероидов.
Сокращение и уплотнение. Сокращение и уплотнение составляют конечную (заключительную) стадию заживления путем формирования рубца. При контракции уменьшается размер рубца, что позволяет остающимся в живых клеткам органа функционировать с максимальной эффективностью; например, преобразование большого миокардиального инфаркта в маленький рубец позволяет оптимально функционировать оставшемуся миокарду.
Сокращение начинается на ранних стадиях заживления и продолжается по мере созревания рубца. Раннее сокращение возникает благодаря активному сокращению филаментов актомиозина в некоторых специализированных миофибрилл-содержащих фибробластах (которые также называются миофибробластами). Более позднее сокращение – свойство непосредственно молекулы коллагена.
Предел прочности рубца зависит от количества коллагена и прогрессивно увеличивается, в конце первой недели он составляет приблизительно 10%, а через несколько месяцев – 80% от его окончательного предела прочности. Увеличение предела прочности возникает в результате увеличения количества коллагена, изменения типа коллагена (с III на I) и увеличения ковалентных связей между молекулами коллагена. Полностью сформированный рубец – гладкий, неэластичный, подвижной структуры.
РЕГЕНЕРАЦИЯ ЭПИТЕЛИЯ
1   ...   20   21   22   23   24   25   26   27   ...   104


написать администратору сайта