Главная страница
Навигация по странице:

  • Они подразделяются на подгруппы в зависимости от строения

  • Выделяют две группы

  • Переваривание липидов в желудке

  • Переваривание липидов в кишечнике

  • Гормоны, активирующие переваривание жиров

  • Кише́чно-печёночная циркуля́ция жёлчных кисло́т

  • Окисление жирных кислот (β-окисление)

  • Этапы окисления жирных кислот 1. Прежде, чем проникнуть в матрикс митохондрий и окислиться, жирная кислота должна активироваться

  • Карнитин

  • Расчет энергетического баланса β-окисления

  • БИОСИНТЕЗ НАСЫЩЕННЫХ ЖИРНЫХ КИСЛОТ

  • Коллоквиум по липидам. коллок по липидам (1). Важнейшие липиды тканей человека. Классификация липидов. Характеристика отдельных групп


    Скачать 1.28 Mb.
    НазваниеВажнейшие липиды тканей человека. Классификация липидов. Характеристика отдельных групп
    АнкорКоллоквиум по липидам
    Дата14.02.2021
    Размер1.28 Mb.
    Формат файлаdocx
    Имя файлаколлок по липидам (1).docx
    ТипДокументы
    #176198
    страница1 из 4
      1   2   3   4

    1. Важнейшие липиды тканей человека. Классификация липидов. Характеристика отдельных групп.



    Классификация

    Липидысложные соединения, которые встречаются в различных модификациях и выполняют различные функции. Поэтому классификация липидов обширна и не ограничивается одним признаком. Наиболее полная классификация по строению приведена в таблице.

    Типы

    Виды

    Общая характеристика

    Простые

    Глицериды

    Нейтральные жиры. Относятся к сложным эфирам, состоящим из глицерина и жирных кислот. Различают моно-, ди- и триглицериды

    Воски

    Сложные эфиры жирных кислот и спиртов (одноатомных или двухатомных)

    Сложные

    Фосфолипиды

    Образованы присоединением к липидам остатков фосфорной кислоты. Обширная группа, включающая две подгруппы:

    – глицерофосфолипиды;

    – сфинголипиды

    Гликолипиды

    Состоят из углеводов и липидов, образующие гидрофильно-гидрофобные комплексы

    Описанные выше липиды относятся к омыляемым жирам – при их гидролизе образуется мыло. Отдельно в группу неомыляемых жиров, т.е. не взаимодействующих с водой, выделяют стероиды.
    Они подразделяются на подгруппы в зависимости от строения:

    • стерины – стероидные спирты, входящие в состав животных и растительных тканей (холестерин, эргостерин);

    • желчные кислоты – производные холевой кислоты, содержащие одну группу -СООН, способствуют растворению холестерина и перевариванию липидов (холевая, дезоксихолевая, литохолевая кислоты);

    • стероидные гормоны – способствуют росту и развитию организма (кортизол, тестостерон, кальцитриол).



    Рис. 2. Схема классификации липидов.

    Отдельно выделяют липопротеины. Это сложные комплексы жиров и белков (аполипопротеинов). Липопротеины относят к сложным белкам, а не к жирам. В их состав входят разнообразные сложные жиры – холестерин, фосфолипиды, нейтральные жиры, жирные кислоты.
    Выделяют две группы:

    • растворимые – входят в состав плазмы крови, молока, желтка;

    • нерастворимые – входят в состав плазмалеммы, оболочки нервных волокон, хлоропласты.

    1. Пищевые жиры. Незаменимые факторы питания липидной природы.



    1. Переваривание липидов. Роль желчных кислот в переваривании и всасывании липидов. Энтерогепатическая циркуляция.

    Переваривание липидов в желудке

    В желудке имеется фермент липаза, способный катализировать расщепление триацилглицеролов. Однако оптимальной средой её действия является среда, близкая к нейтральной. Поэтому липаза в желудке у взрослых людей практически неактивна из-за малых значений pH.

    Однако у детей ситуация обстоит несколько по-другому: желудок детей имеет при рождении среду, близкую к нейтральной (pH (среднее) = 5,5). Это явление обусловлено основным продуктом питания детей — молоком (содержит белки и жирных кислоты (количество углерода меньше 14)). Так, фермент липаза выполняет ключевую роль в метаболизме липидов у детей.

    Переваривание липидов в кишечнике

    В двенадцатиперстной кишке пища подвергается действию желчи и сока поджелудочной железы. На первом этапе там происходит эмульгирование жиров

    Эмульгирование жиров

    Жиры составляют до 90 % липидов, поступающих с пищей. Переваривание жиров происходит в тонком кишечнике, однако уже в желудке небольшая часть жиров гидролизуется под действием «липазы языка» (лингвальная (лат. lingua — язык) липаза). Этот фермент синтезируется железами на дорсальной поверхности языка и относительно устойчив при кислых значениях рН желудочного сока. Поэтому он действует в течение 1—2 ч на жиры пищи в желудке. Однако вклад этой липазы в переваривание жиров у взрослых людей незначителен. Основной процесс переваривания происходит в тонкой кишке.

    Так как жиры — нерастворимые в воде соединения, то они могут подвергаться действию ферментов, растворённых в воде только на границе раздела фаз вода/жир. Поэтому действию панкреатической липазы, гидролизующей жиры, предшествует эмульгирование жиров. Эмульгирование (смешивание жира с водой) происходит в тонком кишечнике под действием солей жёлчных кислот. Жёлчные кислоты в основном конъюгированные: таурохолевая, гликохолевая и другие кислоты.

    Гормоны, активирующие переваривание жиров

    При поступлении пищи в желудок, а затем в кишечник клетки слизистой оболочки тонкого кишечника начинают секретировать в кровь пептидный гормон холецистокинин (панкреозимин). Этот гормон действует на жёлчный пузырь, стимулируя его сокращение, и на экзокринные клетки поджелудочной железы, стимулируя секрецию пищеварительных ферментов, в том числе панкреатической липазы. Другие клетки слизистой оболочки тонкого кишечника в ответ на поступление из желудка кислого содержимого выделяют гормон секретин. Секретин — гормон пептидной природы, стимулирующий секрецию гидрокарбоната (НСО3-) в сок поджелудочной железы.

    Кише́чно-печёночная циркуля́ция жёлчных кисло́т (синонимы: портально-билиарная циркуляция жёлчных кислот, энтерогепатическая циркуляция) — циклическое обращение жёлчных кислот в пищеварительном тракте, при котором они синтезируются печенью, выводятся в составе жёлчи в двенадцатиперстную кишку, реабсорбируются в кишечнике, транспортируются кровотоком к печени и повторно используются при секреции жёлчи.

    1. β-окисление высших жирных кислот. Локализация процесса. Активация жирных кислот, транспорт, переносчики. Характеристика ферментов.

    Активация жирных кислот[править | править код]

    Жирные кислоты, которые образовались в клетке путём гидролиза триацилглицеридов или поступившие в неё из крови должны быть активированы, так как сами по себе они являются метаболическими инертными веществами, и вследствие этого не могут быть подвержены биохимическим реакциям, включая и окисление. Процесс их активирования происходит в цитоплазме при участии АТФкофермента A (HS-СoA) и ионов Mg2+. Реакция катализируется ферментом ацил-КоА-синтетазой жирных кислот с длинной цепью (Long-chain-fatty-acid—CоА ligaseКФ 6.2.1.3), процесс является эндергоническим, то есть протекает за счёт использования энергии гидролиза молекулы АТФ:

    {\displaystyle {\mathsf {R-COOH+ATP+CoA-SH{\xrightarrow[{}]{Mg^{2+}}}R-COS-CoA+AMP+H_{4}P_{2}O_{7}}}.}

    ацил-КоА-синтетазы находятся как в цитоплазме, так и в матриксе митохондрий. Эти ферменты отличаются по специфичности к жирным кислотам с различной длиной углеводородной цепи. Жирные кислоты с короткой и средней длиной цепи (от 4 до 12 атомов углерода) могут проникать в матрикс митохондрий путём диффузии. Активация этих жирных кислот происходит в матриксе митохондрий[2].

    Жирные кислоты с длинной цепью, которые преобладают в организме человека (от 12 до 20 атомов углерода), активируются ацил-КоА-синтетазами, расположенными на внешней стороне внешней мембраны митохондрий.

    Выделившийся в ходе реакции пирофосфат гидролизуется ферментом пирофосфатазой

    {\displaystyle {\mathsf {H_{4}P_{2}O_{7}+H_{2}O\rightarrow 2H_{3}PO_{4}}}.}

    При этом происходит сдвиг равновесия реакции в сторону образования ацил-КоА[2].

    Поскольку процесс активации жирных кислот происходит в цитоплазме, то далее необходим транспорт ацил-КоА через мембрану внутрь митохондрии.

    Деградация жирных кислот происходит в митохондриальном матриксе путём окислительного цикла реакций, при котором последовательно отщепляются C2-звенья в виде ацетил-КоА (активированной уксусной кислоты). Последовательное отщепление ацетильных групп начинается с карбоксильного конца активированных жирных кислот каждый раз между C-2 (α-атомом) и C-3 (β-атомом). Поэтому цикл реакций деградации называется β-окислением. Пространственно и функционально β-окисление тесно связано с цитратным циклом (см. Антитела) и дыхательной цепью.



    1. β-окисление высших жирных кислот. Реакции цикла: дегидрирования, гидратации и тиолитического расщепления. Характеристика дегидрогеназ. Взаимосвязь с дыхательной цепью.

    Окисление жирных кислот (β-окисление)

    Для преобразования энергии, заключенной в жирных кислотах, в энергию связей АТФ существует метаболический путь окисления жирных кислот до СО2 и воды, тесно связанный с циклом трикарбоновых кислот и дыхательной цепью. Этот путь называется β-окисление, т.к. происходит окисление 3-го углеродного атома жирной кислоты (β-положение) в карбоксильную группу, одновременно от кислоты отщепляется ацетильная группа, включающая С1 и С2 исходной жирной кислоты.



    Элементарная схема β-окисления

    Реакции β-окисления происходят в митохондриях большинства клеток организма (кроме нервных клеток). Для окисления используются жирные кислоты, поступающие в цитозоль из крови или появляющиеся при липолизе собственных внутриклеточных ТАГ. Суммарное уравнение окисления пальмитиновой кислоты выглядит следующим образом:

    Пальмитоил-SКоА + 7ФАД + 7НАД+ + 7Н2O + 7HS-KoA → 8Ацетил-SКоА + 7ФАДН2 + 7НАДН

    Этапы окисления жирных кислот

    1. Прежде, чем проникнуть в матрикс митохондрий и окислиться, жирная кислота должна активироваться в цитозоле. Это осуществляется присоединением к ней коэнзима А с образованием ацил-SКоА. Ацил-SКоА является высокоэнергетическим соединением. Необратимость реакции достигается гидролизом дифосфата на две молекулы фосфорной кислоты.

    Ацил-SКоА-синтетазы находятся в эндоплазматическом ретикулуме, на наружной мембране митохондрий и внутри них. Существует широкий ряд синтетаз, специфичных к разным жирным кислотам.



    Реакция активации жирной кислоты

    2. Ацил-SКоА не способен проходить через митохондриальную мембрану, поэтому существует способ его переноса в комплексе с витаминоподобным веществом карнитином. На наружной мембране митохондрий имеется фермент карнитин-ацилтрансфераза I.



    Карнитин-зависимый транспорт жирных кислот в митохондрию

    Карнитин синтезируется в печени и почках и затем транспортируется в остальные органы. Во внутриутробном периоде и в первые годы жизни значение карнитина для организма чрезвычайно велико. Энергообеспечение нервной системы детского организма и, в частности, головного мозга осуществляется за счет двух параллельных процессов: карнитин-зависимого окисления жирных кислот и аэробного окисления глюкозы. Карнитин необходим для роста головного и спинного мозга, для взаимодействия всех отделов нервной системы, ответственных за движение и взаимодействие мышц. Существуют исследования, связывающие с недостатком карнитина детский церебральный паралич и феномен "смерти в колыбели".

    Дети раннего возраста, недоношенные и дети с малой массой особен-но чувствительны к недостаточности карнитина. Эндогенные запасы у них быстро истощаются при различных стрессовых ситуациях (инфекционные заболевания, желудочно-кишечные расстройства, нарушения вскармливания). Биосинтез карнитина резко ограничен в связи с небольшой мышечной массой, а поступление с обычными пищевыми продуктами неспособно поддержать достаточный уровень в крови и тканях.

    3. После связывания с карнитином жирная кислота переносится через мембрану транслоказой. Здесь на внутренней стороне мембраны фермент карнитин-ацилтрансфераза II вновь образует ацил-SКоА который вступает на путь β-окисления.

    4. Процесс собственно β-окисления состоит из 4-х реакций, повторяющихся циклически. В них последовательно происходит окисление (ацил-SКоА-дегидрогеназа), гидратирование (еноил-SКоА-гидратаза) и вновь окисление 3-го атома углерода (гидроксиацил-SКоА-дегидрогеназа). В последней, трансферазной, реакции от жирной кислоты отщепляется ацетил-SКоА. К оставшейся (укороченной на два углерода) жирной кислоте присоединяется HS-КоА, и она возвращается к первой реакции. Все повторяется до тех пор, пока в последнем цикле не образуются два ацетил-SКоА.



    Последовательность реакций β-окисления жирных кислот

    Расчет энергетического баланса β-окисления

    Ранее при расчете эффективности окисления коэффициент P/O для НАДH принимался равным 3,0, для ФАДH2 – 2,0.

    По современным данным значение коэффициента P/O для НАДH соответствует 2,5, для ФАДH2 – 1,5.

    При расчете количества АТФ, образуемого при β-окислении жирных кислот необходимо учитывать:

    • количество образуемого ацетил-SКоА – определяется обычным делением числа атомов углерода в жирной кислоте на 2.

    • число циклов β-окисления. Число циклов β-окисления легко определить исходя из представления о жирной кислоте как о цепочке двухуглеродных звеньев. Число разрывов между звеньями соответствует числу циклов β-окисления. Эту же величину можно подсчитать по формуле (n/2 -1), где n – число атомов углерода в кислоте.

    • число двойных связей в жирной кислоте. В первой реакции β-окисления происходит образование двойной связи при участии ФАД. Если двойная связь в жирной кислоте уже имеется, то необходимость в этой реакции отпадает и ФАДН2 не образуется. Количество недополученных ФАДН2 соответствует числу двойных связей. Остальные реакции цикла идут без изменений.

    • количество энергии АТФ, потраченной на активацию (всегда соответствует двум макроэргическим связям).

    Пример. Окисление пальмитиновой кислоты

    1. Так как имеется 16 атомов углерода, то при β-окислении образуется 8 молекул ацетил-SКоА. Последний поступает в ЦТК, при его окислении в одном обороте цикла образуется 3 молекулы НАДН (7,5 АТФ), 1 молекула ФАДН2 (1,5 АТФ) и 1 молекула ГТФ, что эквивалентно 10 молекулам АТФ. Итак, 8 молекул ацетил-SКоА обеспечат образование 8×10=80 молекул АТФ.

    2. Для пальмитиновой кислоты число циклов β-окисления равно 7. В каждом цикле образуется 1 молекула ФАДН2 (1,5 АТФ) и 1 молекула НАДН (2,5 АТФ). Поступая в дыхательную цепь, в сумме они "дадут" 4 молекулы АТФ. Таким образом, в 7 циклах образуется 7×4=28 молекул АТФ.

    3. Двойных связей в пальмитиновой кислоте нет.

    4. На активацию жирной кислоты идет 1 молекула АТФ, которая, однако, гидролизуется до АМФ, то есть тратятся 2 макроэргические связи или две АТФ.

    5. Таким образом, суммируя, получаем 80+28-2 =106 молекул АТФ образуется при окислении пальмитиновой кислоты.

    6. Энергетический эффект окисления жирных кислот на примере пальмитиновой, стеариновой кислот. Общее уравнение процесса.

    7. Особенности β-окисления моноеновых жирных кислот.

    8. Синтез насыщенных жирных кислот. Локализация процесса. Исходные вещества. Транспорт ацетил-КоА из митохондрий в цитоплазму.

    БИОСИНТЕЗ НАСЫЩЕННЫХ ЖИРНЫХ КИСЛОТ

    В настоящее время в достаточной степени изучен механизм биосинтеза жирных кислот в организме животных и человека, а также катализирующие этот процесс ферментные системы. Синтез жирных кислот протекает в цитоплазме клетки. В митохондриях в основном происходит удлинение существующих цепей жирных кислот. Установлено, что в цитоплазме печеночных клеток синтезируется пальмитиновая кислота (16 углеродных атомов), а в митохондриях этих клеток из уже синтезированной в цитоплазме клетки пальмитиновой кислоты или из жирных кислот экзогенного происхождения, т.е. поступающих из кишечника, образуются жирные кислоты, содержащие 18, 20 и 22 углеродных атома.

    Иными словами, митохондриальная система биосинтеза жирных кислот, включающая несколько модифицированную последовательность реакций β-окисления, осуществляет только удлинение существующих в организме среднецепочечных жирных кислот, в то время как полный биосинтез пальмитиновой кислоты из ацетил-КоА активно протекает в цитозоле, т.е. вне митохондрий, по совершенно другому пути.
      1   2   3   4


    написать администратору сайта