Главная страница
Навигация по странице:

  • Липопротеины низкой плотности

  • Глицерол

  • Активация жирной кислоты

  • Ресинтез эфиров холестерола Холестерол этерифицируется с использованием ацил-SКоА и фермента ацил-SКоА:холестерол-ацилтрансферазы

  • Ресинтез триацилглицеролов Для ресинтеза ТАГ есть два пути:Первый путь, основной – 2-моноацилглицеридный

  • Ресинтез фосфолипидов Фосфолипиды синтезируются также, как и в остальных клетках организма (см "Cинтез фосфолипидов"). Для этого есть два способа:Первый путь

  • ЖИДКОСТНО-МОЗАИЧНАЯ МОДЕЛЬ МЕМБРАН

  • НАДФН

  • Коллоквиум по липидам. коллок по липидам (1). Важнейшие липиды тканей человека. Классификация липидов. Характеристика отдельных групп


    Скачать 1.28 Mb.
    НазваниеВажнейшие липиды тканей человека. Классификация липидов. Характеристика отдельных групп
    АнкорКоллоквиум по липидам
    Дата14.02.2021
    Размер1.28 Mb.
    Формат файлаdocx
    Имя файлаколлок по липидам (1).docx
    ТипДокументы
    #176198
    страница3 из 4
    1   2   3   4

    ЛПВП отдают апоЕ- и апоСII-белки на первичные формы ЛПОНП и ХМ, и потом забирают обратно апоСII-белки от остаточных форм.

    Таким образом, при метаболизме ЛПВП в нем происходит накопление свободного ХС, МАГ, ДАГ, ТАГ, лизоФХ и утрата фосфолипидной оболочки. Функциональные способности ЛПВП снижаются.

    6. Далее ЛПВП2 захватывается гепатоцитами при помощи апоА-1-рецептора, происходит эндоцитоз и частица разрушается.



    Транспорт холестерола и его эфиров в организме
    (цифры соответствуют пунктам метаболизма ЛПВП по тексту)

    Липопротеины низкой плотности

    Общая характеристика

    • образуются в гепатоцитах de novo и в сосудистой системе печени под воздействием печеночной ТАГ-липазы из ЛПОНП,

    • в составе преобладают холестерол и его эфиры, другую половину массы делят белки и фосфолипиды (38% эфиров ХС, 8% свободного ХС, 25% белки, 22% фосфолипидов, 7% триацилглицеролов),

    • основным апобелком является апоВ-100,

    • нормальное содержание в крови 3,2-4,5 г/л,

    • самые атерогенные.

    Функция

    1. Транспорт холестерола в клетки, использующих его 

    • для реакций синтеза половых гормонов (половые железы), глюкокортикоидов и минералокортикоидов (кора надпочечников),

    • для превращения в холекальциферол (кожа),

    • для образования желчных кислот (печень),

    • для выведения в составе желчи (печень).

    2. Транспорт полиеновых жирных кислот в виде эфиров ХС в некоторые клетки рыхлой соединительной ткани (фибробласты, тромбоциты, эндотелий, гладкомышечные клетки), в эпителий гломерулярной мембраны почек, в клетки костного мозга, в клетки роговицы глаз, в нейроциты, в базофилы аденогипофиза.

    Клетки рыхлой соединительной ткани активно синтезируют эйкозаноиды. Поэтому им необходим постоянный приток полиненасыщенных жирных кислот (ПНЖК), что осуществляется через апо-В-100-рецептор, т.е. регулируемым поглощением ЛПНП, которые несут ПНЖК в составе эфиров холестерола.

    Особенностью клеток, поглощающих ЛПНП, является наличие лизосомальных кислых гидролаз, расщепляющих эфиры ХС. У других клеток таких ферментов нет. 

    Иллюстрацией значимости транспорта ПНЖК в указанные клетки служит ингибирование салицилатами фермента циклооксигеназы, образующей эйкозаноиды из ПНЖК. Салицилаты успешно применяются в кардиологии для подавления синтеза тромбоксанов и снижения тромбообразования, при лихорадке, как жаропонижающее средство за счет расслабления гладких мышц сосудов кожи и повышения теплоотдачи. Однако одним из побочных эффектов тех же салицилатов является подавление синтеза простагландинов в почках и снижение почечного кровобращения.

    Также в мембраны всех клеток, как сказано выше (см "Метаболизм ЛПВП"), ПНЖК могут переходить в составе фосфолипидов от оболочки ЛПВП.

    Метаболизм

    1. В крови первичные ЛПНП взаимодействуют с ЛПВП, отдавая свободный ХС и получая этерифицированный. В результате в них происходит накопление эфиров ХС, увеличение гидрофобного ядра и "выталкивание" белка апоВ-100 на поверхность частицы. Таким образом, первичный ЛПНП переходит в зрелый.

    2. На всех клетках, использующих ЛПНП, имеется высокоафинный рецептор, специфичный к ЛПНП – апоВ-100-рецептор. Около 50% ЛПНП взаимодействует с апоВ-100-рецепторами разных тканей и примерно столько же поглощается гепатоцитами.

    3. При взаимодействии ЛПНП с рецептором происходит эндоцитоз липопротеина и его лизосомальный распад на составные части – фосфолипиды, белки (и далее до аминокислот), глицерол, жирные кислоты, холестерол и его эфиры.

      • ХС превращается в гормоны или включается в состав мембран,

      • излишки мембранного ХС удаляются с помощью ЛПВП,

      • принесенные с эфирами ХС ПНЖК используются для синтеза эйкозаноидов или фосфолипидов.

      • при невозможности удалить ХС часть его этерифицируется с олеиновой или линолевой кислотами ферментом ацил-SКоА:холестерол-ацилтрансферазой (АХАТ-реакция),



    Синтез олеата холестерола при участии
    ацил-SKoA-холестерол-ацилтрансферазы

    На количество апоВ-100-рецепторов влияют гормоны:

    • инсулин, тиреоидные и половые гормоны стимулируют синтез этих рецепторов,

    • глюкокортикоиды уменьшают их количество. 

    15. Ресинтез жиров в кишечнике. Образование и метаболизм хиломикронов. Роль липопротеинлипазы в метаболизме хиломикронов. Регуляция активности этого фермента.

    В стенке кишечника происходит ресинтез жира

    Всасывание липидов

    После расщепления полимерных липидных молекул полученные мономеры всасываются в верхнем отделе тонкого кишечника в начальные 100 см. В норме всасывается 98% пищевых липидов.

    1. Короткие жирные кислоты (не более 10 атомов углерода) всасываются и переходят в кровь без каких-либо особенных механизмов. Этот процесс важен для грудных детей, т.к. молоко содержит в основном коротко- и среднецепочечные жирные кислоты. Глицерол тоже всасывается напрямую.

    2. Другие продукты переваривания (длинноцепочечные жирные кислоты, холестерол, моноацилглицеролы) образуют с желчными кислотами мицеллы с гидрофильной поверхностью и гидрофобным ядром. Их размеры в 100 раз меньше самых мелких эмульгированных жировых капелек. Через водную фазу мицеллы мигрируют к щеточной каемке слизистой оболочки. Здесь мицеллы распадаются и липидные компоненты диффундируют внутрь клетки, после чего транспортируются в эндоплазматический ретикулум.

    Желчные кислоты также здесь могут попадать в энтероциты и далее уходить в кровь воротной вены, однако бóльшая их часть остается в химусе и достигает подвздошной кишки, где всасывается при помощи активного транспорта.

    Ресинтез липидов в энтероцитах

    Ресинтез липидов – это синтез липидов в стенке кишечника из поступающих сюда экзогенных жиров, иногда могут использоваться и эндогенные жирные кислоты. Основная задача этого процесса – связать поступившие с пищей средне- и длинноцепочечные жирные кислоты со спиртом – глицеролом или холестеролом. Это ликвидирует их детергентное действие на мембраны и позволяет переносить по крови в ткани.

    Активация жирной кислоты

    Поступившая в энтероцит (как и в любую другую клетку) жирная кислота обязательно активируется через присоединение коэнзима А. Образовавшийся ацил-SКоА участвует в реакциях синтеза эфиров холестерола, триацилглицеролов и фосфолипидов.



    Реакция активации жирной кислоты

    Ресинтез эфиров холестерола

    Холестерол этерифицируется с использованием ацил-SКоА и фермента ацил-SКоА:холестерол-ацилтрансферазы (АХАТ).

    Реэтерификация холестерола напрямую влияет на его всасывание в кровь. В настоящее время ищутся возможности подавления этой реакции для снижения концентрации ХС в крови.



    Реакция ресинтеза холестерола

    Ресинтез триацилглицеролов

    Для ресинтеза ТАГ есть два пути:

    Первый путь, основной – 2-моноацилглицеридный – происходит при участии экзогенных 2-МАГ и ЖК в гладком эндоплазматическом ретикулуме энтероцитов: мультиферментный комплекс триацилглицерол-синтазы формирует ТАГ.



    Моноацилглицеридный путь образования ТАГ

    Поскольку 1/4 часть ТАГ в кишечнике полностью гидролизуется, а глицерол в энтероцитах не задерживается и быстро переходит в кровь, то возникает относительный избыток жирных кислот для которых не хватает глицерола. Поэтому существует второй, глицеролфосфатный, путь в шероховатом эндоплазматическом ретикулуме. Источником глицерол-3-фосфата служит окисление глюкозы. Здесь можно выделить следующие реакции:

    1. Образование глицерол-3-фосфата из глюкозы.

    2. Превращение глицерол-3-фосфата в фосфатидную кислоту.

    3. Превращение фосфатидной кислоты в 1,2-ДАГ.

    4. Синтез ТАГ.



    Глицеролфосфатный путь образования ТАГ

    Ресинтез фосфолипидов

    Фосфолипиды синтезируются также, как и в остальных клетках организма (см "Cинтез фосфолипидов"). Для этого есть два способа:

    Первый путь – с использованием 1,2-ДАГ и активных форм холина и этаноламина для синтеза фосфатидилхолина или фосфатидилэтаноламина.



    Ресинтез фосфолипидов из ДАГ на примере фосфатидилхолина

    Второй путь – на основе синтезируемой in situ фосфатидной кислоты.



    Схема ресинтеза фосфолипидов из фосфатидной кислоты

    После ресинтеза фосфолипиды, триацилглицеролы, холестерол и его эфиры упаковываются в особые транспортные формы липидов – липопротеины и только в такой форме они способны покинуть энтероцит и транспортироваться в крови. В кишечнике формируются два вида липопротеинов – хиломикроны и липопротеины высокой плотности (ЛПВП), другие типы липопротеинов здесь не образуются.

    16. Роль липидов в структурной организации и функционировании мембран. Изменение физико-химических свойств липидного компонента. Роль холестерола.

    Функции мембранных липидов.

    Фосфо- и гликолипиды мембран, помимо участия в формировании липидного бислоя, выполняют ряд других функций. Липиды мембран формируют среду для функционирования мембранных белков, принимающих в ней нативную конформацию.

    Некоторые мембранные липиды – предшественники вторичных посредников при передаче гормональных сигналов. Так фосфатидилинозитолдифосфат под действием фосфолипазы С гидролизируется до диацилглицерола и инозитолтрифосфата, являющихся вторичными посредниками гормонов.

    Ряд липидов участвует в фиксации заякоренных белков. Примером заякоренного белка является ацетилхолинэстераза, которая фиксируется на постсинаптической мембране к фосфатитилинозитолу.

    17. Основные липиды мембраны клетки и их функции. Жидко-кристаллическая мозаичная теория строения биологических мембран.

    Фосфолипиды составляют основу билипидного слоя клеточных мембран, холестерин — регулятор текучести мембран. 

    ЖИДКОСТНО-МОЗАИЧНАЯ МОДЕЛЬ МЕМБРАН

    Функционирующие мембраны представляют собой двумерный раствор глобулярных интегральных белков, диспергированных в жидком фосфолипидном матриксе. Жидкостно-мозаичная модель мембранной структуры была предложена в 1972 г. Сингером и Николсоном (рис. 42.9). Первые данные об адекватности этой модели были получены при искусственно индуцированном слиянии двух разных родительских клеток. Оказалось, что при образовании межвидовой гибридной клетки в плазматической мембране происходит быстрое стохастическое перераспределение видоспецифичных белков. Впоследствии



    Рис. 42.9. Жидкостно-мозаичная модель мембранной структуры. Основой мембраны является липидный бислой; с ним связаны белки, либо погруженные в бислой, либо присоединенные к цитоплазматической поверхности. Интегральные мембранные белки жестко закреплены в липидном бислое. Некоторые из этих белков пронизывают бислой и называются трансмембранными, другие погружены либо в наружный, либо во внутренний слой. Белки, слабо связанные с внутренней поверхностью мембраны, называются периферическими. Многие белки и липиды несут олигосахаридные цепочки, выступающие во внешнюю среду.

    было показано, что фосфолипиды тоже способны быстро перераспределяться в плоскости мембраны. Такая диффузия в плоскости мембраны, называемая латеральной, может осуществляться довольно быстро: одна молекула фосфолипида перемещается за 1 с на расстояние несколько микрометров.

    Фазовые переходы и, следовательно, текучесть мембран сильно зависят от липидного состава мембран. В липидном бислое гидрофобные цепочки жирных кислот ориентированы практически параллельно друг другу, в результате чего образуется достаточно жесткая структура. При повышении температуры гидрофобный слой переходит из упорядоченного состояния в неупорядоченное, и образуется более жидкая, текучая система. Температура, при которой вся структура претерпевает переход из упорядоченного состояния в беспорядочное, называется температурой перехода. Более длинные и более насыщенные жирнокислотные цепи обладают более высокой температурой перехода, т.е. для повышения текучести образованной ими структуры необходима более высокая температура. Наличие ненасыщенных связей в  -конфигурации приводит к повышению текучести бислоя из-за снижения компактности упаковки цепей без изменения гидрофобности (рис. 42.3). Фосфолипиды клеточных мембран обычно содержат по крайней мере одну ненасыщенную жирную кислоту, имеющую по крайней мере одну двойную связь в  -положении.

    Холестерол играет роль молекулярного модификатора мембран, включение которого приводит к образованию состояний с промежуточной текучестью. Если ацильные боковые цепи находятся в неупорядоченном состоянии, то холестерол вызывает их конденсацию; если же они образуют какую-то кристаллоподобную структуру, то холестерол переводит ее в неупорядоченное состояние. При высоком отношении холестерол/липид фазовый переход вообще не происходит.

    Текучесть мембраны сильно влияет на ее функционирование. При увеличении текучести мембрана становится более проницаемой для воды и других малых гидрофильных молекул, растет скорость латеральной диффузии интегральных белков. Если активный центр интегрального белка, осуществляющий некую функцию, располагается исключительно в гидрофильной его части, то изменение текучести липидов, вероятно, не скажется слишком сильно на активности белка. Но если белок выполняет транспортную функцию и транспортный компонент пересекает мембрану, то изменения свойств липидной фазы могут привести к значительному изменению скорости транспорта. Превосходным примером является зависимость функционирования инсулинового рецептора от текучести мембран (гл. 51). Когда концентрация ненасыщенных жирных кислот в мембране растет (при культивировании клеток в среде, богатой этими соединениями), увеличивается

    текучесть, а это приводит к тому, что рецептор связывает больше инсулина.

    18. Метаболизм мембран. Активные формы кислорода — активаторы ПОЛ мембран. Показатели ПОЛ.

    19. Регуляторы перекисного окисления липидов в клетках. Прооксиданты и антиоксиданты.

    20. Механизм переноса веществ через мембраны: простая диффузия, активный транспорт: первичный (Na++-АТФаза), вторичный; экзо- и эндоцитоз.

    21. Схема взаимосвязи углеводного и липидного обмена. Образование жиров из глюкозы. Роль пентозофосфатного пути.

    Печень перекрещивает метаболизм углеводов, липидов и белков

    Печень, являясь центральным органом метаболизма, участвует в поддержании метаболического гомеостаза и способна осуществлять взаимодействие реакций обмена белков, жиров и углеводов.

    Местами "соединения" обмена углеводов и белков является пировиноградная кислота, щавелевоуксусная и α-кетоглутаровая кислоты из цикла трикарбоновых кислот, способных в реакциях трансаминирования превращаться, соответственно, в аланин, аспартат и глутамат. Аналогично протекает процесс превращения аминокислот в кетокислоты.

    С обменом липидов углеводы связаны еще более тесно:

    • образуемые в пентозофосфатном пути молекулы НАДФН используются для синтеза жирных кислот и холестерола,

    • глицеральдегидфосфат, также образуемый в пентозофосфатном пути, включается в гликолиз и превращается в диоксиацетонфосфат,

    • глицерол-3-фосфат, образуемый из диоксиацетонфосфата гликолиза, направляется для синтеза триацилглицеролов. Также для этой цели может быть использован глицеральдегид-3-фосфат, синтезированный в этапе структурных перестроек пентозофосфатного пути,

    • "глюкозный" и "аминокислотный" ацетил-SКоА способен участвовать в синтезе жирных кислот и холестерола.



    Взаимосвязь обмена белков, жиров и углеводов

    Углеводный обмен

    В гепатоцитах активно протекают процессы углеводного обмена. Благодаря синтезу и распаду гликогена печень поддерживает концентрацию глюкозы в крови. Активный синтез гликогена происходит после приема пищи, когда концентрация глюкозы в крови воротной вены достигает 20 ммоль/л. Запасы гликогена в печени составляют от 30 до 100 г. При кратковременном голодании происходит гликогенолиз, в случае длительного голодания основным источником глюкозы крови является глюконеогенез из аминокислот и глицерина.

    Печень осуществляет взаимопревращение сахаров, т.е. превращение гексоз (фруктозы, галактозы) в глюкозу.

    Активные реакции пентозофосфатного пути обеспечивают наработку НАДФН, необходимого для микросомального окисления и синтеза жирных кислот и холестерола из глюкозы.
    1   2   3   4


    написать администратору сайта