Главная страница
Навигация по странице:

  • 44. Роль микроорганизмов в геохимических процессах круговорота серы

  • 45. Рост микроорганизмов.Рост клетки и популяции.Основные параметры роста культур.Кривая роста. Периодическое культивирование. Проточное культивирование. Синхронные культуры.

  • Рост бактерий в периодической культуре

  • 47. Спиртовое брожение. Брожением

  • 1. Анаэробное дыхание. Аноксигенная фототрофия прокариот


    Скачать 275.4 Kb.
    Название1. Анаэробное дыхание. Аноксигенная фототрофия прокариот
    АнкорMIKROBIOLOGIYa.docx
    Дата12.12.2017
    Размер275.4 Kb.
    Формат файлаdocx
    Имя файлаMIKROBIOLOGIYa.docx
    ТипДокументы
    #11085
    страница8 из 11
    1   2   3   4   5   6   7   8   9   10   11

    Патогенные (болезнетворные)микроорганизмы вызывают различные инфекционные заболевания людей иживотных. Инфекционные заболевания человека возникают в результате внедрения в организм и размножения в нем патогенных микроорганизмов. Инфекции заразны, т. е. передаются от больного к здоровому человеку при контакте, через воздух, посуду, пишу или насекомых-переносчиков. В зависимости от механизма передачи различают воздушно-капельные, кровяные, кишечные и кож- но-венерические инфекции. Кишечные инфекции передаются с водой, пищей или грязными руками.
    Источником инфекции могут быть больные люди или бактерионосители — практически здоровые люди, в организме которых находятся болезнетворные микроорганизмы. Бактерионосительство формируется после перенесенного заболевания в результате самолечения или других причин.
    Некоторые инфекционные заболевания могут передаваться человеку от больных животных и продуктов животноводства. Такие инфекции называются зоонозами. Они, как правило, не распространяются далее от человека к человеку.
    Условно патогенные микроорганизмы вызывают пищевые отравления, а не инфекции, так как для возникновения заболевания требуется предварительное значительное накопление в пище живых микробов и выделенных ими токсинов.
    С целью профилактики инфекционных заболеваний и пищевых отравлений необходимо тщательно мыть руки перед приготовлением пищи, перед едой, после посещения туалета или работы с деньгами. Обнаружение кишечной палочки на руках работника пищевого производства указывает на несоблюдение им правил личной гигиены.
    44. Роль микроорганизмов в геохимических процессах круговорота серы

    Во всех организмах сера представлена главным образом сульфгидрильными (-SH) или дисульфидными (-S-S-) группами метионина, цистеина и гомоцистеина. При анаэробном разложении белков сульф гидр ильные группы отщепляются десульфуразами, при этом выделяется сероводород. Этот процесс напоминает аммонификацию азотсодержащих органических соединений. Наибольшее количество сероводорода образуется при диссимиляционном восстановлении сульфатов (диссимиляционная сульфатредукция, или «сульфатное дыхание»), осуществляемом облигатно анаэробными бактериями (бактерии родов Desulfovibrio, Desutfotomaculum, Desulfococcus, Desulfosarcina, Desulfonema). Последние используют сульфат для окисления низкомолекулярных органических соединений или молекулярного водорода. Диссимиляционное восстановление элементной серы в анаэробных условиях способны осуществлять бактерии рода Desulfuromonas. Сульфатредуцирующие (или десульфатирующие) бактерии в круговороте серы играют роль, сопоставимую с ролью нитратредуцирующих бактерий в круговороте азота. Их деятельность заметна на дне прудов, вдоль побережья моря по чѐрному цвету ила (связан с образованием сульфида двухвалентного железа) и запаху (за счет выделения сероводорода). Из-за токсического действия сероводорода некоторые береговые области иногда практически безжизненны. • Образованный в отсутствие молекулярного кислорода сероводород может быть окислен анаэробными фототрофными бактериями семейства Chromatiaceae до серы (виды Chlorobium) или до сульфата (виды Chromatium). В этом семействе известны бактерии, накапливающие серу внутри клеток в качестве промежуточного продукта окисления сероводорода (виды Thiospirillum, Chromatium, Thiodiction), и бактерии, откладывающие серу вне клеток (виды Ectothiorhodospira). • В аэробных условиях сероводород под действием бесцветных серобактерий (виды Beggiatoa, Thtothrix) окисляется (через промежуточное образование серы) в сульфат. Сероводород может также окисляться в присутствии кислорода абиотическим путѐм. Свободную серу в аэробных условиях могут окислить до сульфата представители рода

    Thiobacillus. Некоторые из них — хемолитотрофы, другие используют в качестве источников энергии и углерода органические соединения. • Образуя большие количества серной кислоты, тиобациллы уменьшают щелочность почвы, переводя карбонат кальция в лучше растворимый сульфат кальция, вымываемый из почвы. Таким образом, добавляя в известковые почвы элементную серу, можно бороться с их избыточным известкованием. Что касается серы, необходимой для синтеза серосодержащих аминокислот, то она поступает в организм животных с пищей, содержащей восстановленные соединения серы; растения и часть микроорганизмов получают еѐ в процессе ассимиляционной сульфатредукции. Как и при ассимиляции нитрата, ассимилируется ровно столько питательных веществ, содержащих серу или азот, сколько их необходимо для роста организма; поэтому
    45. Рост микроорганизмов.Рост клетки и популяции.Основные параметры роста культур.Кривая роста. Периодическое культивирование. Проточное культивирование. Синхронные культуры.

    Рост бактерий в периодической культуре
    При внесении бактерий в питательную среду они обычно растут до тех пор, пока содержание какого-нибудь из необходимых им компонентов среды не достигнет минимума, после чего рост прекращается. Если на протяжении этого времени не добавлять питательных веществ и не удалять конечных продуктов обмена, то получим так называемую периодическую культуру (популяцию клеток в ограниченном жизненном про-странстве). Рост в такой «закрытой системе» подчиняется закономерностям, действительным не только для одноклеточных, но и для

    многоклеточных организмов. Периодическая культура ведет себя как многоклеточный организм с генетически ограниченным ростом.

    Кривая, описывающая зависимость логарифма числа живых клеток от времени, называетсякривойроста. Типичная кривая роста(рис. 6.6)имеетS-образную форму и позволяет различить несколько фаз роста, сменяющих друг друга в определенной последовательности и в большей или меньшей степенивыраженных: начальную (или лаг-) фазу, экспоненциальную (или логарифмическую) фазу, стационарную фазу и фазу отмирания.

    Рост микроорганизмов на твердых питательных средах протекает в основном так же, хотя при этом достигаются значительно более высокие плотности клеток.
    Начальная фаза. Эта фаза охватывает промежуток времени между инокуляцией и достижениеммаксимальной скорости деления. Продолжительность этой фазы зависит главным образом от предшествовавших условий культивирования и возраста инокулята, а также от того, насколько пригодна для роста данная среда. Если инокулят взят из старой культуры (в стационарной фазе роста), то клеткам приходится сначала адаптироваться к новым условиям путем синтеза РНК,образования рибосом и синтеза ферментов. Если источники энергии и углерода в новой среде отличаются от тех, какие были в предшествующей культуре, то приспособление (адаптация) к новым условиям может быть связано с синтезом новых ферментов, которые ранее не были нужны и поэтому не синтезировались. Образование новыхферментов индуцируется новым субстратом.

    Хорошим примером влияния субстрата на синтез ферментов служит так называемая диауксия(рис. 6.7). Это явление двухфазного роста или двойного цикла роста наблюдается на средах, содержащих смесь пита-тельных веществ. Из смеси глюкозы и сорбитола Escherichia coli, например, поглощает в первую очередь глюкозу. Глюкоза индуцирует сначала в клетках синтез ферментов, которые нужны для ее использования.и одновременно подавляет (репрессирует) синтез ферментов, необходимых для использования сорбитола. Эти последние ферменты образуются лишь после того, как вся глюкоза будет израсходована. Такие регуляторные процессы достаточно хорошо объясняют наличие двух начальных фаз.

    Количественное изменение состава бактериальной клетки во время начальной фазы роста сильнее всего затрагивает рибонуклеиновую кислоту: содержание РНК повышается в 8-12 раз. Это указывает на участие РНК и рибосом в синтезе ферментных белков.

    Экспоненциальная фаза. Экспоненциальная(логарифмическая)фаза роста характеризуетсяпостоянной максимальной скоростью деления клеток. Эта скорость во время экспоненциальной фазы зависит от вида бактерий, а также от среды. Энтеробактерии делятся через каждые 15-30 мин, Escherichia coli при 37°С-примерно каждые 20 мин. У других бактерий время генерации значительно больше: у многих почвенных видов оно достигает 60-150 мин, а у Nitrosomonas иNitrobacter-даже 5-10 ч.

    Величина клеток и содержание в них белка у многих бактерий тоже остаются в экспоненциальной фазе постоянными. В известном смысле можно сказать, что бактериальная культура в этом случае состоит из «стандартных клеток». Если точно установлено, что число клеток, содержание в них белка и их сухая биомасса увеличиваются с одинаковой скоростью, то за ростом культуры можно следить, пользуясь каким-ни-будь одним из этих показателей.

    Нередко, однако, и в экспоненциальной фазе роста клетки периодической культуры претерпевают изменения, так как постепенно изменяется среда: уменьшается концентрация субстрата, увеличивается плот-ность клеточной суспензии и накапливаются продукты обмена. В связи с тем что в экспоненциальной фазе скорость деления клеток относительно постоянна, эта фаза наиболее удобна для определения скорости деления (и скорости роста). Изучая влияние факторов среды (рН, окислительно-восстановительного потенциала, температуры, аэрации и т. д.), а также пригодность различных субстратов, следят за увеличением числа клеток или за мутностью (экстинкцией) клеточной суспензии во время экспоненциального роста.

    Стационарная фаза. Стационарная фаза наступает тогда,когда число клеток перестает увеличиваться.Скорость роста зависит от концентрации субстрата-при уменьшении этой концентрации, еще до полного ис-пользования субстрата, она начинает снижаться. Поэтому переход от экспоненциальной фазы к стационарной происходит постепенно. Скорость роста может снижаться не только из-за нехватки субстрата, но также из-за большой плотности бактериальной популяции, из-за низкого парциального давления 02 или

    накопления токсичных продуктов обмена; все эти факторы вызывают переход к стационарной фазе. И в ста-ционарной фазе могут еще происходить такие процессы, как использование запасных веществ, распад части рибосом и синтез ферментов. Наблюдаемая картина зависит от того, какой именно фактор лимитирует рост. Быстро гибнут лишь очень чувствительные клетки; другие еще долго сохраняют жизнеспособность-до тех пор, пока есть возможность получать необходимую для этого энергию в процессе окисления каких-либо запасных веществ или клеточных белков.

    Количество биомассы, достигнутое в стационарной фазе, называют выходом или урожаем. Урожай зависит от природы и количества используемых питательных веществ, а также от условий культивирования.

    Фаза отмирания. Фаза отмирания и причины гибели бактериальных клеток в нормальных питательныхсредах изучены недостаточно. Сравнительно легко понять случаи, когда в среде накапливаются кислоты (при росте Escherichia, Lactobacillus). Число живых клеток может снижаться экспоненциально. Иногда клетки лизируются под действием собственных ферментов (автолиз).
    В 50-е годы 20 века был разработан метод непрерывного культивирования микроорганизмов (метод проточных культур). Сущность метода состоит в том, что в культиватор, где производится выращивание бактерий, все время поступает свежая питательная среда и одновременно с такой же скоростью выводится культуральная жидкость. В результате для микроорганизмов создаются неизменные условия в отношении наличия питательных веществ и фактически отсутствия продуктов обмена. Регулируя скорость проточной среды, можно управлять развитием бактериальной популяции, например, задержать культуру в логарифмической фазе роста на любое длительное время.
    Синхронные культурыСинхронные культуры – это бактериальные культуры или популяции, в которой все клетки находятся на одинаковой стадии клеточного цикла. В естественных культурах – периодических и проточных – такого явления не наблюдается. Даже в экспоненциальной фазе роста в культуре содержатся неделящиеся и находящиеся на разных стадиях деления клетки. Синхронное деление клеток вызывают искусственно, воздействуя на культуру различными факторами, например, пониженной или повышенной температурой. Считается, что неблагоприятные температуры больше сказываются на развитии делящихся клеток, более чувствительных к действию различных факторов. В результате происходит торможение развития. За это время к делению подготовятся другие клетки культуры. Следующее за ним воздействие оптимальной температуры постепенно вызывает синхронное деление клеток. Для получения синхронных культур используют метод вынужденного голодания. Клетки помещают на неполноценную среду, культивируют, затем переносят на полноценную. У фотосинтезирующих бактерий синхронные культуры получают чередованием световых и темновых режимов культивирования. Также используют механические методы: пропускание культуры через специальные фильтры (отбор клеток одинакового размера) и центрифугирование (клетки, находящиеся в начале цикла деления, более мелкие и оседают медленнее).
    Синхронные культуры используют для изучения синтеза отдельных клеточных компонентов в процессе деления клетки

    46. Систематика и номенклатура прокариот.Современные направления в систематикепрокариот: фенотипический подход, геносистематика, филогенетическая систематика. Искусственные системы классификации. Правила и термины номенклатуры и диагностики. Клон, культура, популяция бактерий. Понятие «вид» у прокариот.

    Систематика (таксономия) —наука,занимающаяся вопросами классификации,номенклатуры иидентификации микроорганизмов. Задачей классификации является объединение микроорганизмов с общими свойствами в определенные группы (таксоны). Номенклатура — система наименований, применяемых в определенной области знаний. Идентификация — отнесение микроорганизмов к определенному таксону (виду) на основании конкретных признаков.

    Для того чтобы отнести микроорганизм к той или иной таксономической группе, необходимо определить основные его признаки: морфологию, подвижность, окраску по Граму, наличие капсулы и способность к образованию эндоспор, культурально-биохимические свойства и некоторые другие признаки. В классификации для группирования родственных организмов используют следующие таксономические категории: царство
    (regnum), отдел (divisio), секцию (section), класс (classis), порядок (ordo), семейство (familia), род (genus), вид

    (species).

    Основной номенклатурной единицей является вид. В. Д. Тимаков (1973) даст следующее определение ему: «Вид — это совокупность микроорганизмов, имеющих единое происхождение и генотип, сходных по морфологическим и биологическим свойствам, обладающих наследственно закрепленной способностью вызывать в среде естественного обитания качественно определенные специфические процессы». Вид подразделяют на подвиды или варианты. Имеются также и инфраподвидовые подразделения, которые

    основаны на отличии особей каким-либо небольшим наследственным признаком: антигенным — серовар, биохимическим — биовар, отношением к фагам — фаговар, патогенностью — патовар и др.

    • микробиологии пользуются терминами «штамм» и «клон». Штамм — культура одного и того же вида, выделенная из разных объектов и отличающаяся незначительными изменениями свойств (например, чувствительностью к антибиотикам, ферментацией углеводов и др.). Под термином «культура» понимают микроорганизмы, выращенные на плотной или жидкой питательной среде в условиях лаборатории. Клон — это культура, полученная из одной клетки. Культуру микроорганизмов, полученную из особей одного вида, называют чистой культурой. Смешанной культурой называют смесь неоднородных микроорганизмов, выделенных из исследуемого материала (молока, почвы, воды, патматериала).

    • микробиологии существует два различных подхода к систематике, обусловливающие два вида классификации. В основе первого лежит идея создания естественной (филогенетической) классификации прокариот, т. е. построения единой системы, объективно отражающей родственные отношения между разными группами и историю их эволюционного развития. Второй подход к систематике преследует практические цели и служит для идентификации, т. е. установления принадлежности микроорганизма к определенному виду. Это искусственная классификация (традиционная). Современные системы классификации микроорганизмов, по существу, являются искусственными. Этому служат определители, которыми пользуются главным образом при идентификации того или иного микроорганизма. К таким определителям относятся: «Определитель бактерий и актиномицетов» Н. А. Красильникова (1949), «Определитель микробов» Р. А. Циона (1948) и др. К международным определителям бактерий относится «Руководство по систематике бактерий» Д. X. Берги, девятое издание которого вышло в 1984 г. В этом определителе все прокариотические микроорганизмы объединены в царство Procaryotae, которое подразделяется на четыре отдела. Они, в свою очередь, делятся на секции, классы, порядки, семейства, роды, виды.

    Существует также фенотипическая классификация. Слово «фенотипический» происходит от греч. phainomenon, т. е. «то, что мы видим». Эта классификация основана исключительно на внешних, т. е. видимых, признаках (фенотипическое сходство), причем все учитываемые признаки считаются одинаково важными. Учитываться могут самые разнообразные признаки организма по принципу чем больше, тем лучше. И совсем необязательно, чтобы они отражали эволюционные связи. Когда накапливается определенное число данных, на их основе рассчитывается степень сходства между различными организмами; обычно это делается с помощью компьютера, поскольку расчеты крайне сложны.

    Генная систематика основана на способности бактерий с гомологичными ДНК к трансформации, трансдукции и конъюгации, на анализе внехромосомных факторов наследственности – плазмид, транспозонов, фагов.
    47. Спиртовое брожение.

    Брожением называется анаэробный процесс превращения безазотистых органических веществ(главнымобразом углеводов) микроорганизмами, при котором происходит накопление продуктов неполного окисления (спиртов, органических кислот, углеводов и др.) и который сопровождается выделением энергии. Биологическое значение брожения заключается в образовании энергии для осуществления жизнедеятельности микроорганизмов подобно дыханию животных и растений.
    Спиртовым брожением называется процесс расщепления сахара микроорганизмами с образованием этилового спирта и углекислого газа.
    С6Н12О6 - 2СН3СН2ОН+2СО2.
    Возбудителями спиртового брожения являются дрожи сахаромицеты, некоторые мицеальные грибы. Даже растения и грибы в анаэробных условиях способны накапливать этиловый спирт.
    Процесс проходит 2 стадии:
    1. Окислительная - превращение глюкозы до пировиноградной кислоты (пируват) и отнятие двух пар водорода.
    С6Н12О6--2СН3СОСООН= ―НАД (кофермент) Н2О
    2. Далее пируват декарбоксилируется пируваткарбоксилазой при участии тиаминпирофрсфата до ацетальдегида, а затем ацетальдегид восстанавливается алкогольдегидрогеназой в этанол при участии кофермента НАД.
    Во второй стадии- восстановительный кофермент НАД Н2 передает водород конечному акцептору.
    Характерной физиологической особенностью большинства дрожжей является их способность переключать обмен с одного типа (анаэробный) на другой (аэробный). Недостаточность выделяющейся при брожении энергии дрожжи возмещают переработкой большого количества сахара, чем при дыхании. Наряду с главными продуктами брожения в небольшом количестве образуются и побочные продукты: глицерин, уксусный альдегид, сивушные масла. В состав сивушных масел входят пропанол, 2-бутанол, амиловый , изоамиловый спирты.
    Высшие спирты участвуют в формировании аромата и вкуса напитков спиртового брожения.
    Дрожжи способны сбраживать помимо глюкозы и пировиноградную кислоту. В качестве промежуточного продукта при сбраживании пирувата образуется ацетальдегид; если к дрожжам сбраживающим глюкозу добавить бисульфит, то появится новый продукт-глицерин, при снизится выход этилового спирта.
    УСЛОВИЯ СПИРТОВОГО БРОЖЕНИЯ:

    На развитие дрожжей и ход брожения влияют: химический состав сбраживаемой среды,
    концентрация и кислотность среды, содержание спирта, температура, наличие посторонних микроорганизмов.
    Большинство дрожжей способны сбраживать моносахариды, а из дисахаридов-сахарозу и мальтозу. Дрожжи не могут сбраживать крахмал, так как они не образуют амилолитических ферментов.
    Наиболее благоприятная концентрация сахара- от 10 до 15%. При повышении концентрации сахара энергия брожения снижается, а при 30-35% сахара брожение прекращается. Хорошим источником азота для большинства дрожжей являются аммонийные соли, но дрожжи могут использовать также аминокислоты и пептиды.
    Нормальное брожение протекает в кислой среде, при рН 4-5. В щелочной среде в результате брожения образуется глицерин. Наибольшая скорость брожения при температуре 30 С. При температуре 45-50оС брожение прекращается в результате гибели клеток дрожжей. Снижение температуры замедляет ход брожения, но полностью оно не прекращается даже при температуре ниже ОоС.
    С энергетической точки зрения брожение — процесс малоэффективный. Так, если при окислении 1 граммолекулы глюкозы до СО2 и Н2О в процессе аэробного дыхания синтезируется 36 моль АТФ, то в процессе спиртового брожения — всего 2 моль АТФ.
    1   2   3   4   5   6   7   8   9   10   11


    написать администратору сайта