Главная страница
Навигация по странице:

  • Роль микроорганизмов в круговороте водорода

  • Роль микроорганизмов в круговороте кислорода

  • Роль микроорганизмов в круговороте углерода

  • 54. Участие микроорганизмов в круговороте азота.

  • 55.Участие микроорганизмов в круговороте серы. .Участие микроорганизмов в круговороте фосфора. Круговорот фосфора.

  • Типы мутаций.

  • Современные достижения генной инженерии.

  • 58.Фимбрии прокариот, их строение и функции. Классификация фимбрий.

  • 59.Форма и размеры прокариот. Характерные объединения клеток. трихомный морфотип «Гигантские» и «карликовые» организмы. Факторы, определяющие размеры и форму клетки

  • 60.Формы переноса генетического материала у прокариот: трансформация, трансдукция, конъюгация. Конъюгация

  • 1. Анаэробное дыхание. Аноксигенная фототрофия прокариот


    Скачать 275.4 Kb.
    Название1. Анаэробное дыхание. Аноксигенная фототрофия прокариот
    АнкорMIKROBIOLOGIYa.docx
    Дата12.12.2017
    Размер275.4 Kb.
    Формат файлаdocx
    Имя файлаMIKROBIOLOGIYa.docx
    ТипДокументы
    #11085
    страница10 из 11
    1   2   3   4   5   6   7   8   9   10   11

    53. Участие микроорганизмов в биогеохимических циклах кислорода,углерода иводорода.

    Роль микроорганизмов в круговороте водорода:

    К водородным бактериям относятся эубактерии, способные получать энергию путем окисления молекулярного водорода с участием О2, а все вещества клетки строить из углерода СО2. Водородные бактерии - хемолитоавтотрофы, растущие при окислении Н2 в аэробных условиях. Н 2 +1/5О22О. Помимо окисления для получения энергии молекулярный водород используется в конструктивном метаболизме. На 5 молекул Н2, окисленного в процессе дыхания приходится 1 молекула Н2, затраченная на образование биомассы. 6 Н2+2О2+СО 2=СН2О +5Н 2О. Молекулярный водород - наиболее распространенный неорганический субстрат, используемый бактериями для получения энергии в процессе окисления. К водородным бактериям относятся представители 20 родов, объединяющие грамположительные и грамотрицательные формы разной морфологии, подвижные и неподвижные, образующие спор и бесспоровые, размножающиеся делением и почкованием.(род Hydrogenobacter). Из всех хемолитоавтотрофных эубактерий только водородные бактерии с помощью определенной формы гидрогеназы могут осуществлять непосредственное восстановление НАД+ окислением неорганического субстрата. К образованию молекулярного водорода приводят разные процессы, в том числе и биологические. Активными продуцентами Н2 являются эубактерии. Также активно осуществляется и потребление Н2
    Важная роль в этом принадлежит водородным бактериям. В последнее время водородные бактерии привлекают к себе внимание возможностью практического использования: для получения кормового белка, а также ряда органических соединений (кислоты, аминокислоты, витамины, ферменты).
    Роль микроорганизмов в круговороте кислорода:

    Молекулярный кислород микроорганизмы используют в процессе дыхания и окисления неорганических веществ. Выделяют кислород в атмосферу некоторые фотосинтезирующие бактерии (цианобактерии и прохролофиты). По мере накопления кислород становится постоянным компонентом внешней среды, и только локально могут быть созданы такие условия, где он отсутствует или содержится в малых количествах. Это обусловило два возможных варианта взаимодействия прокариот с молекулярным кислородом. Одни из существовавших анаэробных форм «ушли» в места обитания, где кислород практически отсутствует, и тем самым сохранили «облик бескислородной эпохи». Другие были вынуждены пойти по пути приспособления к «кислородным» условиям. Это означает, что они формировали новые метаболические реакции, служащие в первую очередь для нейтрализации отрицательного действия молекулярного кислорода.

    Группы хемолитотрофных эубактерий: эубактерии, окисляющие соединения серы; железобактерии; нитрифицирующие бактерии; водородные бактерии; карбоксидобактерии; эубактерии, восстанавливающие сульфаты. Группы хемоорганотрофных бактерий: метилотрофы; уксуснокислые бактерии; аммонифицирующие бактерии; бактерии, разрушающие целлюлозу; денитрифицирующие бактерии.

    Роль микроорганизмов в круговороте углерода:

    Круговорот углерода складывается из двух взаимосвязанных процессов: 1) потребление углекислоты атмосферного воздуха аутотрофными микробами; 2) возвращения, пополнения запасов углекислоты в атмосфере. Потребление СО2 совершается фотосинтезирующими микроорганизмами. При фотосинтезе образуются различные органические соединения. Основная масса углерода отлагается в растениях в форме различных сахаров (глюкоза, фруктоза, крахмал и др.). Образовавшиеся органические соединения используются человек и животными для питания, а после их гибели органические вещества переходят в почву. Возвращение углекислоты происходит микроорганизмами почвы и воды. Большое количество углекислоты поступает обратно в атмосферу при минерализации органических остатков растений и животных почвенными бактериями и грибами. Главными субстратами процессов минерализации в природе являются сахара в форме полимеров. Использование глюкозы в качестве основного энергетического материала при процессах биологического окисления (брожение, дыхание) приводит к высвобождению углекислоты. Дополнительный цикл круговорота углерода обусловлен анаэробными почвенными микроорганизмами. Одни из них (метанобактерии) в условиях влажных почв восстанавливают СО2 в метан (СН4). Другие, наоборот, окисляют метан в углекислоту.
    В зависимости от источника углерода все прокариоты делятся на две группы: автотрофы (синтезируют все необходимые компоненты из углекислоты) и гетеротрофы (источником углерода служат органические соединения). Последние делятся на паразитов (живут за счет других живых клеток) и сапрофиты (нуждаются в готовых органических веществах, но от других организмов не зависят.

    54. Участие микроорганизмов в круговороте азота.
    При самом активном, широком участии микроорганизмов в природе, главным образом в почве и гидросфере, постоянно осуществляется два противоположных процесса: синтез из минеральных веществ сложных органических соединений и, наоборот, разложение органических веществ до минеральных. Единство этих противоположных процессов лежит в основе биологической роли микроорганизмов в круговороте веществ в природе. Среди различных процессов превращения веществ в природе, в которых микроорганизмы принимают активное участие, важнейшее значение для осуществления жизни растений, животных и человека на Земле имеют круговорот азота, углерода, фосфора, серы, железа.
    Важнейший элемент, входящий в состав белков, а следовательно, имеющий исключительное значение для жизни — это азот. В живых существах, населяющих планету, содержится примерно 15—20 млрд. т азота, в почвах (в 30-сантиметровом слое) на каждом гектаре имеется в среднем 5—15 т азота.
    В круговороте азота в природе с участием микроорганизмов различают следующие этапы: усвоение атмосферного азота, аммонификацию, нитрификацию, денитрификацию.
    Усвоение азота из атмосферного воздуха азотфиксирующими бактериями. Среди микробов, усваивающих атмосферный азот, различают две группы — свободноживущих и клубеньковых.
    Свободноживущие азотфиксаторы живут и фиксируют азот в почве независимо от растений. Основные виды этих микробов: Azotobacter chroococcum, Cl. pasteurianum. Азотобактер на площади в 1 га в течение года фиксирует от 20 до 50 кг газообразного азота, повышая плодородие почвы. Наиболее интенсивно этот процесс идет при хорошей аэрации почвы.
    Клубеньковые бактерии — активные фиксаторы атмосферного азота в симбиозе с бобовыми растениями. Наличие бактерий в клубеньках бобовых растений установлено М. Ворониным. В чистой культуре эти микробы выделены Бейеринком в 1888 г. и названы Bact. radicicola (современное— род Rhizobium).
    Аммонификация - это минерализация азотсодержащих органических веществ, протекающая под воздействием аммонифицирующих микробов, выделяющих протеолитические ферменты. Благодаря аммонификации представителей растительного и животного мира и их продуктов жизнедеятельности (мочевины, испражнений) почва обогащается азотом и другими соединениями. Одновременно с этим аммонифицирующие микробы выполняют огромную санитарную роль, очищая почву и гидросферу от разлагающегося органического субстрата. Основными представителями широко распространенных в природе аммонифицирующих микробов являются следующие. Микроорганизмы, разлагающие мочевину: Вас. probatus и Sporosarcina ureae Спорообразующие аэробы — это Вас. mesentericus (картофельная бактерия), Вас. megatherium (капустная бактерия), Вас. subtilis (сенная палочка), Вас. mycoides (грибовидная бацилла). Не образующие спор аэробные аммонификаторы — это Е. coli, Proteus vulgaris, Ps. fluorescens.
    К анаэробным спорообразующим аммонификаторам относятся Cl. putrificum (газообразующая клостридия), Cl. sporogenes.
    Аммонификацию вызывают также актиномицеты, грибы, триходермы, живущие в почве.
    Нитрификация — следующий за аммонификацией этап превращения азота микроорганизмами. Этот процесс представляет собой окисление аммиака, образующегося при разложении органических азотсодержащих соединений.
    Денитрификация, протекающая под воздействием микробов, представляет собой восстановление нитратов с образованием в качестве конечного продукта — молекулярного азота, возвращающегося из почвы в атмосферу. Вызывается этот процесс денитрифицирующими бактериями. Наиболее распространенные из них в природе: Tiolacillus denitrifi-cans — палочка, не образующая спор, факультативный анаэроб; Ps. fluo-rescens
    — подвижная палочка, выделяет зеленоватый пигмент, быстро разлагает нитраты; Ps. aeruginosa — бактерия сходна с предыдущей; Ps. Stutzeri — небольшая палочка, образующая цепочки, разлагает нитраты в

    анаэробных условиях.
    55.Участие микроорганизмов в круговороте серы.
    .Участие микроорганизмов в круговороте фосфора.
    Круговорот фосфора. В биосфере фосфор представлен почти исключительно в виде фосфатов.Вживых организмах фосфорная кислота существует в форме эфиров. После отмирания клеток эти эфиры быстро разлагаются, что ведет к освобождению ионов фосфорной кислоты. Доступной для растений формой фосфора в почве служат свободные ионы ортофосфорной кислоты (Н3Р04). Их концентрация часто очень низка; рост растений, как правило, лимитируется не общим недостатком фосфата, а образованием малорастворимых его соединений, таких как апатит и комплексы с тяжелыми металлами. Запасы фосфатов в месторождениях, пригодных для разработки, велики, и в обозримом будущем производство сельскохозяйственной продукции не будет ограничиваться недостатком фосфора; однако фосфат должен быть переведен в растворимую форму. Во многих местах фосфат из удобрений попадает в проточные водоемы и озера. Так как концентрация ионов железа, кальция и алюминия в водоемах невысока, фосфат остается в растворенной форме, что приводит к эвтрофизации водоемов, особенно благоприятной для развития азотфиксирующих цианобактерий. В почвах же из-за образования нерастворимых солей фосфаты чаще всего быстро становятся недоступными для усвоения. Фосфаты доступны для сухопутных организмов благодаря непрерывному переводу нерастворимых фосфатных соединений в растворимые. В этом процессе микробам принадлежит ведущая роль. Кислые продукты метаболизма — органические и неорганические (например, азотная и серная) кислоты растворяют фосфат кальция. Образуемый бактериями сероводород способствует растворению фосфатов железа.

    57.Фенотипическая и генотипическая изменчивость. Мутационная природа изменчивости. Типы мутаций. Спонтанный и индуцированный мутагенез. Применение мутантов микроорганизмов в научных исследованиях и в практических целях.
    В основе изменчивости лежит либо изменение реакции генотипа на факторы окружающей среды, либо изменение самого генотипа в результате мутации генов или их рекомбинации. В связи с этим изменчивость подразделяют на наследственную и ненаследственную.
    Ненаследственная (средовая,фенотипическая). Ответная реакция на изменение Окр. Среды и носит адаптивный характер. Геном не изменяется и измен. Исчезает после устранение фактора. Пример Возбуд. сибир. Язвы: понижение кальция-слизистость, Повышение кальция- нет слизостости.
    Наследственная (генотипическая) изменчивость, связанная с мутациями, — мутационная изменчивость. Основу мутации составляют изменения последовательности нуклеотидов в ДНК, полная или частичная их утрата, т. е. происходит структурная перестройка генов, проявляющаяся фенотипически в виде измененного признака.

    Типы мутаций. Мутации могут возникать в любых клетках организма,приводить к любым изменениям в

    генетическом аппарате и соответственно в фенотипе. Мутации, возникающие в половых клетках, называют генеративными. Они наследуются при половом размножении. Мутации, возникающие в неполовых (соматических) клетках, называют соматическими. Они могут наследоваться только при условии неполового или вегетативного размножения.


      • зависимости от влияния на жизнедеятельность организмов различают летальные мутации, сублетальные (снижают жизнеспособность) и нейтральные (при определенных условиях не влияют на жизнеспособность). Вероятность того, что мутация повысит жизнеспособность, незначительна. Но в некоторых случаях, особенно когда меняются условия существования, нейтральные мутации могут оказаться полезными для организма.




      • зависимости от характера изменений генетического аппарата различают мутации, связанные с изменением количества наборов хромосом (геномные), с изменением числа хромосом отдельных пар, перестройкой хромосом, а также мутации отдельных генов (генные).


    По происхождению мутации у бактерий классифицируются на спонтанные и индуцированные.


    1. Спонтанные мутации трудно или невозможно связать с действием определѐнного фактора (мутаге-на).


    а. Наиболее часто спонтанные мутации происходят вследствие ошибки в работе ДНК-полимеразы при репликации ДНК.
    б. Вторую группу спонтанных мутаций составляют инсертационные мутации, которые происходят вследствие встраивания в нуклеоид внехромосомных факторов наследственности.
    2. Индуцированные мутации у бактерий вызываются в результате воздействия мутагенов на бактериальную популяцию, т. е. физических, химических или биологических факторов, способных вызывать мутацию. К мутагенам относятся различные виды радиации, температура, ряд химических соединений.
    Современные достижения генной инженерии. Изучение механизмов передачи генов у бактерий иучастия в этом процессе внехромосомных элементов открыло возможность включения чужеродной ДНК в бактериальные клетки. Генетические манипуляции позволяют вносить не большие отрезки носителей генетической информации высших организмов, например человека, в бактерию и заставлять ее синтезировать соответствующие белки. Вполне осуществимо производство гормонов, антигенов, антител и других белков с помощью бактерий. Делаются также попытки передать растениям способность к азотфиксации и лечить болезни, связанные с биохимическими дефектами.
    58.Фимбрии прокариот, их строение и функции. Классификация фимбрий.
    Пили (лат. pilus – волос), или фимбрии (лат. fimbria - нитка), или ворсинки Гл. функция пилей: Фимбрии явл-ся адгезинами бактерий, т.е. факторы иммобилизации клеток. Они обеспечивают контактные взаимод-я 3-х типов: (1) между гомологичными и гетерологичными бакт.; (2) между бакт. и др. живыми организмами; (3) между бакт. И (не)органическими субстратами.
    Строение: Пили - прямые белковые цилиндры, отходящие от поверхности клетки. Построены из субъединиц (протомеров) белка — пилина (молекулярная масса 17-30кДа). Число на одну клетку: нес-ко ед-ц до нес-ко тыс. (1-500). Расположение: перитрихиально или полярно. Диаметр — 3—10 нм (тоньше жгутиков), длина 0,2–2,0 мкм.
    Классификация: Современ. классификация пилей непоследовательна и запутана. Поэтому рассмотрим только некоторые типы пилей. Пили различаются по строению и назначению, причѐм у одной бактерии могут присутствовать несколько их типов. 1. Пили общего (главного) типа Обр-ся в большом количестве на кл.: 50— 400 пилей/кл., от 10 до нес-ких тыс. на 1 кл. Расположены перитрихиально. Прикрепляются к пов-ти кл. (нет базального тела). Отходят под прямым углом к пов-ти кл. Гл. функция – обеспечение адгезии. Они также придают бактериям свойство гидрофобности. Могут являться фактором патогенности и вирулентности (поскольку вызывают агглютинацию эритроцитов).
    2. Пили альтернативного типа, или пили IV типа (по традиционной классификации) или половые пили, или F-пили (от fertility – плодовитость) Число на клетку: единицы (1-2 шт/кл). Располаг-ся полярно (на одном из полюсов кл.). Имеют базальное тело (проходят насквозь ЦПМ и наружн. мембр.). Кроме адгезивных св-в, могут быстро «сокращаться» - поэтому участвуют в движении («твитчинг» - подвижность рывком) и конъюгации. F-пили: длина 2-20мкм, Ø 8нм, Ø внутр. канала 2нм. При участии F-пилей внутрь бакт. клеток могут проникать нек. бактериофаги. F- пили –рецептор для нитчатых бактериофагов.

    59.Форма и размеры прокариот. Характерные объединения клеток. трихомный морфотип «Гигантские» и «карликовые» организмы. Факторы, определяющие размеры и форму клетки.
    Формы: 1Шаровидные, 2палочковидные, 3извитые, 4редкие формы. 1:микроккоки, диплококки, тетракокки, сарцины, стафилококки, стрептоккоки. 2: монобациллы, диплобациллы, стрептобациллы. 3: Варион, спирилла, спирохета:Лептоспиры, Трепонемы, Боррелии. 4: Тороид, Протеска(выросты кл), квадратные клетки( родHaloarcuba).Размер:0,5-5мкм д d=2мкм

    Характерные объединения клеток: -За счет стебельков. –за счет слизи (полисахаридных покровов) – с помощью фибрий. придатков белковой природы. Трихомный морфотип. Тирихом-многокл. Не разветвлен. Нитевидные сферические агрегаты, в которой клетки окружены общей наружной мембраной и соединены трубчатыми микоплазмодесмами, пронизывающими поперечные кл.стен.

    Гиганты: Намбийская серая жемчужина D=750мкм-0,75мм. Карлики: Carsonella ruddii, Mycoplasma genitalium d=200-300 нм.
    Факторы, определяющие размеры и форму клетки. Метаболизм прокариотной клетки зависит в основном от внутриклеточной диффузии, а также от «поштучного» транспорта молекул через СМ. Прокариоты являются осмотрофными организмами — они диффузионным способом импортируют питательные субстраты и экспортируют продукты метаболизма. При использовании такой «экстенсивной» транспортной стратегии принципиальное значение приобретает количественное отношение поверхности клетки (S) к ее объему (V), или поверхностно-объемный коэффициент. Таким образом, с уменьшением линейного размера клетки увеличивается ее относительная поверхность, что создает предпосылки для более эффективного осмотрофного питания. Именно в этом и заключается одна из главных причин микроскопического размера прокариотов.
    60.Формы переноса генетического материала у прокариот: трансформация, трансдукция, конъюгация.

    Конъюгация бактерий состоит в переходе генетического материала(ДНК)из клетки-донора(«мужской»)вклет¬куреципиент («женскую») при контакте клеток между собой.
    Мужская клетка содержит F-фактор, или половой фактор, который контролирует синтез так называемых половых пилей, или F-пилей. F-фактор располагается в цитоплазме в виде кольцевой двунитчатой молекулы ДНК, т. е. является плазмидой. Молекула F-фактора содержит гены, контролирующие процесс конъюгации, в том числе синтез F-пилей. При конъюгации F-пили соединяют «мужскую» и «женскую» клетки, обеспечивая переход ДНК через конъюгационный мостик или F-пили. Клетки, содержащие F-фактор в цитоплазме, обозначаются F+; они передают F-фактор клеткам, обозначае¬мым F" («женским»), не утрачивая донорской способности, так как оставляют копии F-фактора. Если F-фактор включается в хромосому, то бактерии приобретают способность передавать фрагменты хромосомной ДНК и называются Hfr-клетками (от англ. high frequency of recombination — высокая частота рекомбинаций), т.е. бактериями с высокой частотой рекомбинаций. При конъюгации клеток Hfr и клеток F" хромосома разрывается и передается с определенного участка (начальной точки) в клетку F", продолжая реплицироваться.
    1   2   3   4   5   6   7   8   9   10   11


    написать администратору сайта