Главная страница
Навигация по странице:

  • 38. Продуценты «одноклеточного» белка

  • 39. Требования, предъявляемые к микробному белку и возможности его использования

  • 41.Область применения энзимов в биотехнологических процессах

  • 42. Преимущества и недостатки энзимных технологий

  • 43.Технология производства энзимов для промышленных целей

  • ответы к экзамену биотехнология. 1. Биотехнология как межотраслевая область научнотехнического прогресса и раздел практических знаний 1917 г был введён термин биотехнология


    Скачать 340.74 Kb.
    Название1. Биотехнология как межотраслевая область научнотехнического прогресса и раздел практических знаний 1917 г был введён термин биотехнология
    Анкорответы к экзамену биотехнология
    Дата07.01.2022
    Размер340.74 Kb.
    Формат файлаdocx
    Имя файлаBT_shpory.docx
    ТипДокументы
    #325347
    страница6 из 9
    1   2   3   4   5   6   7   8   9

    37. Биотехнология производства «одноклеточного» белка

    Относительно новым источником питательных веществ является «белок одноклеточных». Термин относится к белку, который получают при крупномасштабном выращивании микроорганизмов, таких как бактерии, водоросли, а также дрожжи и другие грибы. Белок пригоден для употребления людьми и может быть использован в качестве корма для животных. Он служит полезным источником минеральных веществ, витаминов, жиров и углеводов. Теоретически это позволяет высвободить для нужд человека целый ряд белковых продуктов, таких как соевая мука и зерно, которые в настоящее время используются на корм животных.

    При выборе микроорганизма учитывают удельную скорость роста и выход биомассы на данном субстрате, стабильность при поточном культивировании, величину клеток. Клетки дрожжей крупнее, чем бактерий, и легче отделяются от жидкости при центрифугировании. Можно выращивать полиплоидные мутанты дрожжей с крупными клетками. В настоящее время известны только две группы микроорганизмов, которым присущи свойства, необходимые для крупномасштабного промышленного производства: это дрожжи рода Candida на n-алканах (нормальных углеводородах) и бактерии Methylophillus methylotrophus на метаноле.

    Микроорганизмы можно выращивать и на других питательных средах: на газах, нефти, отходах угольной, химической, пищевой, винно-водочной, деревообрабатывающей промышленности. Экономические преимущества их использования очевидны. Так, килограмм переработанной микроорганизмами нефти дает килограмм белка, а, скажем, килограмм сахара - всего 500 граммов белка.

    38. Продуценты «одноклеточного» белка

    В современных биотехнологических процессах, основанных на использовании микроорганизмов, продуцентами белка служат дрожжи, другие грибы, бактерии и микроскопические водоросли.

    С технологической точки зрения наилучшими из них являются дрожжи. Их преимущество заключается прежде всего в "технологичности": дрожжи легко выращивать в условиях производства. Они характеризуются высокой скоростью роста, устойчивостью к посторонней микрофлоре, способны усваивать любые источники питания, легко отделяются, не загрязняют воздух спорами. Клетки дрожжей содержат до 25% сухих веществ. Наиболее ценный компонент дрожжевой биомассы - белок, который по составу аминокислот превосходит белок зерна злаковых культур и лишь немного уступает белкам молока и рыбной муки. Биологическая ценность дрожжевого белка определяется наличием значительного количества незаменимых аминокислот. По содержанию витаминов дрожжи превосходят все белковые корма, в том числе и рыбную муку.

    В последнее время в качестве продуцентов белка стали использовать бактерии, которые отличаются высокой скоростью роста и содержат в биомассе до 80% белка. Бактерии хорошо поддаются селекции, что позволяет получать высокопродуктивные штаммы. Их недостатками являются трудная осаждаемость, обусловленная малыми размерами клеток, значительная чувствительность к фаговым инфекциям и высокое содержание в биомассе нуклеиновых кислот. Последнее обстоятельство неблагоприятно только в том случае, если предусматривается пищевое использование продукта.

    Следующую группу продуцентов белка составляют грибы. Они привлекают внимание исследователей благодаря способности утилизировать самое разнообразное по составу органическое сырье: мелассу, молочную сыворотку, сок растений и корнеплодов, лигнин- и целлюлозосодержащие твердые отходы пищевой, деревообрабатывающей, гидролизной промышленности. Грибной мицелий богат белковыми веществами, которые по содержанию незаменимых аминокислот ближе всего к белкам сои. Вместе с тем белок грибов богат лизином, основной аминокислотой, недостающей в белке зерновых культур.

    Источниками белковых веществ могут служить и водоросли. При фототрофном способе питания и образования биомассы они используют углекислый газ атмосферы. Выращивают водоросли, как правило, в поверхностном слое прудов, где с площади 0,1 га можно получить столько же белка, сколько с 14 га посевов фасоли. Белок водорослей пригоден не только для кормовых, но и пищевых целей.

    39. Требования, предъявляемые к микробному белку и возможности его использования

    40. Сырьевая база производства белка одноклеточных организмов; высокоэнергетические субстраты, отходы сельского хозяйства и других производств

    Субстраты:
    · высокоэнергетические: нефтегаз, метанол, этанол, метан и н-алканы.
    · отходы: солома, выжимки, отходы цитрусовых, сыворотка молока, меласса, навоз животных и бытовые сточные воды.
    · с/х сырье: сахаров, крахмала и целлюлозы.
    · из водорослей: они хорошо растут в прудах, им нужен только солнечный свет и со2 (Chlorella и Scenedesmus)

    Представляющие существенное коммерческое значение как источники энергии материалы (нефтегаз, метанол, этанол, метан и н-алканы) привлекают внимание биотехнологов как субстраты ряда биотехнологических процессов, главными участниками которых являются бактерии и дрожжи.

    Наиболее подробно как сырье для получения одноклеточного белка изучался метан, хотя в настоящее время в его использовании для указанной цели имеется достаточно большое количество трудностей. В противоположность этому, большое значение придается метанолу.

    Метанол как источник углерода для получения одноклеточного белка обладает многими преимуществами по сравнению с н-парафинами. В нем отсутствуют потенциальные токсичные вещества, он легко растворим в водной фазе в любых концентрациях и при культивировании на средах с метанолом в получаемой биомассе отсутствуют какие-либо остатки углерода (хотя бы потому, что он легко испаряется). Кроме того, имеют значение и другие важные моменты технического

    Широкий спектр исследований, выполненных в 1960-е и 1970-е годы по использованию метанола и сходных соединений в качестве субстратов для получения одноклеточного белка, дали существенный стимул совершенствованию ферментационных технологий, направленных на его производство в крупномасштабных количествах. Упоминавшееся выше аэробное производство прутина является самым крупным из непрерывных процессов и, по существу, представляет собой крупнейшую в мире биотехнологическую систему, что в свою очередь, вследствие необходимости строжайшей экономии, обусловило прогресс в разработках биореакторов с восходящим воздушным потоком (эрлифтных ферменторов).

    Весьма подходящим сырьем для получения одноклеточного белка, предполагаемого к использованию в пищу человека, является этанол. В скором времени перспективы производства одноклеточного белка на этаноле будут определяться рядом локальных факторов: возможностями расщепления этилена, наличием излишков углеводов сельскохозяйсвенного происхождения, политическими ситуациями в региональной экономической самостоятельности, а также состоянием уровня мирового производства.

    Одноклеточный белок на отходах. Процессы, использующие продукты отходов в производстве одноклеточного белка, базируются на основании коммерческих соображений с применением различных дрожжевых организмов в подходящих ферменторных системах. Субстратами для организмов-продуцентов служат: меласса (Sacharomyces cerevisiae), молочная сыворотка в производстве сыра (Kluyeromyces fragilis), отходы крахмального производства с использованием двух видов дрожжей (Endomycopsis fibuligera и Candida utilis). Питательная ценность дрожжей, получаемых в данном процессе, была определена в многочисленных обширных экспериментах по скармливанию этого одноклеточного белка различным видам животных (свиньям, цыплятам и телятам). В проведенных опытах регистрировался хороший рост животных и отсутствие неблагоприятных последствий.

    Заслуживает внимания новый продукт - Pekilo, представляющий собой грибной белок, получаемый путем ферментации углеводов мелассы, молочной сыворотки, отходов фруктов, гидролизатов древесины или сельскохозяйственного сырья. Продукт характеризуется хорошим аминокислотным составом и богат витаминами. Испытания на животных показали, что Pekilo-протеин является хорошим источником белка в питании свиней, телят, бройлеров, кур-несушек и производится при непрерывном культивировании. Используемый для его производства организм является мицелиальным грибом, а получаемый продукт обладает выраженной фиброзной структурой, что делает готовый препарат удобным для применения.

    Одноклеточный белок микопротеин производится для употребления в пищу людей.

    Целлюлоза в сельскохозяйственных и лесных материалах, а также в различных отходах должна составить в недалеком будущем основной сырьевой компонент для многих биотехнологических процессов, включая и одноклеточный белок. Целлюлоза в ее естественной ассоциации с лигнином до сих пор является наиболее распространенным органическим веществом для биологической конверсии. Различные исследовательские учреждения настойчиво изыскивают пути предварительной обработки биологических материалов подобного рода с целью деструкции лигнинового барьера (преимущественно физическими и химическими методами).

    Удаление лигнина из лигноцеллюлозы делает последнюю потенциальным источником энергии для жвачных животных, способных использовать ее в качестве пищи. Таким путем лигноцеллюлозные материалы (солома, выжимки и даже древесина) могут стать полезными кормовыми препаратами для животных.

    Многие виды грибов долгое время служили пищей для человека и выращивались на лигноцеллюлозных материалах. Данные процессы являются примерами низкоэнергетических технологических систем. Процессы различаются по типу используемого субстрата или получаемого продукта, а также по степени изощренности (изобретательности) методологии процесса. В то время как большинство процессов получения одноклеточного белка основано на жидкостных ферментациях, многие из современных способов деградации целлюлозы базируются на ферментации с пониженным увлажнением, известной под термином «твердофазная ферментация».

    Во многих странах некоторая часть соломы, получающейся в сельскохозяйственных производствах, традиционно используется для компостирования с лошадиным навозом для получения субстрата, пригодного при выращивании грибов (Agaricus lisporus ).

    Некоторые мягкие материалы (горох, бобы, отруби и т. п.) служат объектами микробной переработки (гидролиз крахмала и белков) с целью получения продуктов улучшенного качества (например, улучшение аромата продукта, обогащение его белком и аминокислотами). Примерами традиционной пищи на Востоке являются мисо, соевый соус и др., обычно изготавливаемые в "домашних" масштабах. Однако многие из этих блюд составляют основу крупных промышленных производств, требующих существенного биотехнологического оснащения. Подобные блюда и ароматизированные соусы медленно, но верно, распространяются на Запад и несомненно станут в недалеком будущем составной частью нашего ежедневного меню.

    Одноклеточный белок из сельскохозяйственного сырья. Концепция производства растительной биомассы в качестве материала для биотехнологических процессов крайне актуальна и важна. В настоящее время такого рода программы используются в большей степени для производства этанола, но вполне обоснованно полагать, что маниока, сахарный тростник и некоторые виды пальм могут явиться перспективным сырьем, которое подвержено быстрым ферментативным обработкам с достаточно высоким экономическим эффектом. Если лигноцеллюлоза окажется способной легко и экономически выгодно утилизироваться какими-нибудь микрорганизмами, то большинство районов мира получат готовые питательные субстраты, пригодные для различных биотехнологических процессов.

    41.Область применения энзимов в биотехнологических процессах

    С давних пор в таких процессах, как пивоварение, изготовление хлеба и производство сыра, использовалась деятельность ферментов. 1896 г. считается достоверным началом современной микробной ферментной технологии с получением первого коммерческого продукта новой отрасли – такадиастазы, представляющей собой грубую (неочищенную) смесь гидролитического фермента, приготавливаемую путем выращивания гриба Aspergillus oryzae на отрубях ячменя. Быстрое развитие ферментной технологии началось с середины 50-х годов на основе использования грибных (микробных) ферментов. Причиной этого главным образом явилось следующее:
    1) Интенсивное развитие практики глубинного культивирования микроорганизмов, связанных с производством антибиотиков, что, в свою очередь, потребовало новых знаний и привело к быстрому внедрению появляющихся разработок в производство.
    2) Быстрое развитие основных знаний о свойствах ферментов, обусловливающее реализацию их потенциала для целей промышленного катализа.
    Свободные от клеток ферменты имеют в настоящее время широкое применение во многих химических процессах, в которых участвует большое количество последовательных реакций. Однако ферментные процессы, в которых используются в качестве катализаторов микробные клетки, характеризуются довольно большим числом ограничений:
    1. Большая часть субстрата в обычных условиях превращается в микробную биомассу.
    2. Наличие (или возможное появление) побочных реакций, приводящих к накоплению значительных количеств отходов.
    3. Условия для роста микроорганизма могут быть иными, нежели для образования и накопления необходимого продукта.
    4. Выделение и очистка необходимого продукта из культуральной жидкости могут быть сопряжены со значительными трудностями. Многие (если не все) из этих перечисленных недостатков могут быть существенно уменьшены путем использования чистых ферментов и, по-видимому, при дальнейших совершенствованиях методов применения ферментов они будут практически решены. В таких случаях культуральная (ферментационная) жидкость, получаемая при выращивании микроорганизмов (например, дрожжей или мицелиальных грибов, бактерий), является основным источником протеаз, амилаз и в несколько меньшей степени целлюлаз, липаз и других гидролитических ферментов. Многие промышленные ферменты, являясь гидролазами, могут функционировать без дополнительных сложных кофакторов; они легко выделяются (сепарируются от биомассы) без разрушения клеточных стенок продуцентов и хорошо растворимы в воде. Но поскольку большинство ферментов микроорганизмов по своей природе являются внутриклеточными, то наибольший прогресс в биотехнологии может ожидаться именно при их использовании для промышленных целей. реди многих новых областей и возможностей ферментной технологии существенное место отводится утилизации лигноцеллюлозы (или просто древесных материалов). Это "обильное" (с избытком имеющееся в природе) сырье должно использоваться человеком, и многие исследовательские разработки направлены на создание эффективных способов деструкции данного сложного органического соединения.

    42. Преимущества и недостатки энзимных технологий

    Преимущества:

    1) каталитическая активность ферментов высокоспецифична и ограничивается одним типом реакций, так что не происходит побочных реакций;
    2) ферменты могут сразу атаковывать исходную молекулу и осуществлять превращение, для которого потребовалось бы несколько вспомогательных многоступенчатых химических синтезов;
    3) химические преобразования вещества упрощаются — одна или две ступени вместо многоступенчатого синтеза;
    4) ферментативные реакции могут протекать с большой скоростью в мягких условиях.

    Недостатки:
    1) для получения чистого продукта нужен и чистый фермент, а его выделение очень дорого;
    2) в выходящем из реактора продукте сохраняется фермент, который продолжает действовать;
    3) дорогостоящий фермент используется только однократно;
    4) свободный фермент быстро инактивируется (т.е. разрушается);
    5) в отличие от биомассы, которая самовоспроизводится в процессе непрерывной ферментации, фермент в непрерывном процессе нужно все время вводить, так как он вымывается с продуктом реакции.

    43.Технология производства энзимов для промышленных целей

    Использование микроорганизмов в качестве источников производства ферментов стимулируется следующими основными факторами:
    • высокой степенью специфической активности в пересчете на единицу сухого веса продукта.
    • сезонными колебаниями количества и качества сырьевых материалов и возможностью их длительного сохранения в зависимости от климатических изменений.
    • возможностью выбора нужного фермента из широкого спектра микробных катализаторов, характеризующихся различной степенью устойчивости к повышенным температурам рН среды.
    • возможностями промышленной генетики оптимизировать количества выхода ферментов и способов селекции штаммов продуцентов путем мутагенеза, изменения условий культивирования, а также (в последнее время) применения практически неограниченных возможностей методов генетической инженерии.
    Приемы селекции различных микроорганизмов довольно сложны и включают многие факторы: стоимость культивирования, способность секретировать фермент во внешнюю среду или накапливать его внутри клетки, а также способность противостоять неблагоприятным воздействиям внешней среды, повреждающим ферменты и т. п. В зависимости от происхождения ферменты существенно различаются между собой по термостабильности и по отношению к экстремальным значениям рН. Так, например, протеазы Bac. subtilis относительно стабильны при нагреваниях и активны в щелочной среде, в силу чего считаются более подходящими для использования в качестве добавок в стиральные порошки и моющие средства. В противоположность этому, грибные амилазы, вследствие их высокой чувствительности к нагреванию, пригодны в хлебопечении и т. д.
    При селекции продуцентов ферментов генетики промышленных микроорганизмов стремятся улучшить желаемые их свойства: высокий выход фермента, стабильность фермента, независимость синтеза фермента от индуктора, легкое его извлечение из среды и т. п. Нежелательные качества стараются устранить (наличие вредных побочных метаболитов, неприятный запах, нежелательный цвет препарата и т. п).
    Поскольку микробные ферменты являются малообъемными препаратами относительно невысокой стоимости, методы, применяемые для их производства, обычно осуществляются с использованием биореакторов (ферментеров), аналогичных по конструкции и функциях таковым, которые применяются при производстве антибиотиков.
    Выбор культуральной среды является весьма важным моментом в процессе производства, так как она обеспечивает растущий микроорганизм энергией, а также является источником необходимых элементов (углерода, азота и т. д.). Стоимость сырьевого материала непосредственно связана с ценой конечного продукта. В большинстве случаев ферменты получаются при ферментации с одноразовой загрузкой, длящейся от 30 до 150 часов; процессы, основанные на непрерывном (проточном) культивировании, нашли пока еще малое применение в промышленном производстве ферментов. В процессе выращивания продуцентов ферментов, последние могут накапливаться внутри клеток или же секретироваться во внешнюю среду. Коммерческие препараты ферментов могут выпускаться в продажу либо в жидкой, либо в кристаллической форме, очищенными или же в виде "грубых" препаратов. Например, в препаратах, используемых для гидролиза крахмала, целлюлозы, основным критерием является высокая активность основного фермента в препарате, а наличие других активностей зачастую не принимают во внимание. В то же время в препаратах ферментов, используемых в молекулярной биологии, медицине, основным критерием качества является отсутствие дополнительных ферментативных активностей и просто белковых загрязнений. Концентрирование и очистка ферментов зачастую представляет собой весьма сложные процессы. И естественно, что стоимость препаратов ферментов зависит от всех перечисленных выше моментов.
    Ферментные препараты, предназначенные для использования в пищевой промышленности или в медицинской практике, подлежат строгому контролю на токсичность для животных, мутагенную активность, тератогенность и канцерогенность, а также проверяются в различных фармакологических тестах. Ответственность за безопасность выпускаемых ферментных препаратов ложится на фирму, их производящую. Практически, безопасный ферментный препарат должен обладать низкими аллергическими свойствами и быть свободным от токсических веществ, а также вредоносных микроорганизмов.

    Поверхностный метод выращивания продуцентов – культивирование микроорганизмов на поверхности увлажненных стерилизованных отрубей, размещенных в кюветах, которым иногда добавляют солодовые ростки, древесные опилки, свекловичный жом. Инкубацию ведут в специальном термостатируемом цехе при постоянном контроле температуры, влажности, подачи воздуха.

    Глубинный метод более экономный, применяют ферментеры, снабженные приспособлениями для перемешивания и подачи в жидкую питательную среду стерильного воздуха. Сначала ферментер заполняют питательной средой, автоклавируют, затем засевают чистой культурой, подаваемой из специального генератора. Для предотвращения инфекции в ферментере поддерживают повышенное давление наряду с оптимальными значениями рН, температуры, редокс-потенциала и др.

    Проточный метод обеспечивает непрерывную подачу в ферментер как питательной среды так и посевного материала. Размножение м-орг. и биосинтез фермента регулируют при использовании этого метода по мере поступления питательной смеси в ферментер. Основное достоинство - возможность длительное время поддерживать в автоматическом режиме рост культуры микроорганизма.
    1   2   3   4   5   6   7   8   9


    написать администратору сайта