Ответы на диффзачёт 2й курс. 1. Экологическая медицина понятие, цели, задачи. Вклад наследственности, пищевого статуса и свободнорадикального стресса в развитие экологически зависимых заболеваний
Скачать 0.86 Mb.
|
Часть аберраций (хромосомные мосты и др.) механически препятствуют делению клетки, некоторые аберрации (внутри- и межхромосомные обмены, ацентрические фрагменты) приводят к неравномерному разделению хромосом и утрате генетического материала, что вызывает гибель клеток из-за недостатка метаболитов, синтез которых кодировался утраченной частью. Действие ионизирующих излучений на белки. До 20% поглощенной энергии связано с повреждением белков. Механизм повреждения белков: а) при прямом действии ионизирующих излучений: из молекулы белка выбивается электрон и образуется дефектный участок, который мигрирует по полипептидной цепи за счет переброски соседних электронов до тех пор, пока не достигнет участка с повышенными электрон-донорными свойствами. В этом месте в боковых цепях аминокислот возникают свободные радикалы. б) при косвенном действии ионизирующих излучений: образование свободных радикалов происходит при взаимодействии белковых молекул с продуктами радиолиза воды, что влечет за собой изменение структуры белка: - разрыв водородных, гидрофобных, дисульфидных связей; - модификация аминокислот в цепи; - образование сшивок и агрегатов; - нарушение вторичной и третичной структуры белка. Такие нарушения в структуре белка приводят к нарушению его функций (ферментативной, гормональной, рецепторной и др.). Действие ионизирующих излучений на липиды. Под влиянием облучения происходит процесс перекисного окисления липидов - образование свободных радикалов ненасыщенных жирных кислот, которые при взаимодействии с кислородом образуют перекисные радикалы, а они, в свою очередь, реагируют с нативными жирными кислотами. Действие ионизирующих излучений на мембранные структуры клетки. Так как липиды - основа биомембран, то перекисное окисление повлечет за собой изменение их свойств. Клетка - система взаимосвязанных мембран и многие процессы клеточного метаболизма проходят именно на мембранах, поэтому при повреждении мембран в клетке нарушаются биохимические процессы и энергетический обмен (из-за повреждения митохондрий), происходит сдвиг ионного баланса клетки (выравнивание концентраций натрия и калия вследствие сдвига ионного баланса клетки). Действие ионизирующего излучения на углеводы. Углеводы в целом достаточно устойчивы к действию ионизирующего излучения: окислительный распад, укорочение цепи и отщепление альдегидов от простых сахаров наблюдаются при дозах порядка 1000 Гр. Из продукта распада углеводов - глицеринового альдегида - синтезируется метилглиоксаль - вещество, ингибирующее синтез ДНК и белка, и подавляющее деление клеток. Чувствительна к облучению и гиалуроновая кислота, являющаяся составным элементом соединительной ткани: уже при дозе облучения около 10 Гр наблюдается значительное снижение ее вязкости, а при больших дозах – изменение структуры, связанное с отщеплением гексозамина и гексуроновых кислот. 40. Реакция клеток на облучение. Современные представления о механизмах интерфазной и митотической гибели клетки. Три основных типа реакции клетки на облучение: а) радиационный блок митозов (временная задержка деления) - наиболее универсальная реакция клетки на воздействие ионизирующих излучений, ее длительность зависит от дозы: на каждый Грей дозы клетка отвечает задержкой митоза в 1 час. Проявляется данный эффект независимо от того, выживет ли клетка в дальнейшем, причем с увеличением дозы облучения увеличивается не число реагирующих клеток, а именно время задержки деления каждой облученной клетки. Эта реакция имеет огромное приспособительное значение: увеличивается длительность интерфазы, оттягивается вступление клетки в митоз, создаются благоприятные условия для нормальной работы системы репарации ДНК. б) митотическая (репродуктивная) гибель клетки - полная потеря клеткой способности к размножению; развивается при больших дозах ионизирующего излучения. Данный тип реакции не относится к клеткам, не делящимся или делящимся редко. В клетке не выражены дегенеративные процессы. Основная причина митотической гибели клетки - повреждение хромосомного аппарата клетки, приводящее к дефициту синтеза ДНК. Показателем выживаемости клетки является ее способность проходить 5 и более делений. Варианты митотической гибели: 1) клетка гибнет в процессе одного из первых четырех пострадиационных митозов, невзирая на отсутствие видимых изменений; 2) облученные клетки после первого пострадиационного митоза формируют так называемые "гигантские" клетки (чаще в результате слияния "дочерних" клеток), которые способны делиться не более 2-3 раз, после чего погибают. в) интерфазная гибель клетки - гибель клетки, которая наступает до ее вступления в митоз. Для большинства соматических клеток человека она регистрируется после облучения в дозах в десятки и сотни Гр (лимфоциты, как радиочувствительные клетки, гибнут по этому механизму даже при небольших дозах). В клетке наблюдаются различные дегенеративные процессы вплоть до её лизиса. Механизм интерфазной гибели (последовательность реакций, приводящих к лизису клетки): 1. За счёт разрывов в молекуле ДНК нарушается структура хроматина. В свою очередь, в мембранах идёт процесс перекисного окисления липидов. 2. Изменения ДНК-мембранного комплекса вызывают остановку синтеза ДНК. 3. Повреждение мембраны лизосом приводит к выходу из них ферментов - протеаз и ДНК-аз 4. ДНК-азы разрушают ДНК, что ведет к пикнозу ядра. Повреждение мембран митохондрий ведёт к выходу из них кальция, который активирует протеазы. Вышеперечисленные процессы приводят к гибели (аутолизу) клетки. 41. Дозиметрия. Виды доз. Дозиметрия - это измерение дозы или ее мощности. Доза ионизирующего излучения - количество энергии ионизирующей радиации, поглощенной единицей массы любой облучаемой среды. Мощность дозы - доза излучения в единицу времени. Основная задача дозиметрии - определение дозы излучения в различных средах и в тканях живого организма. Значение дозиметрии: - необходима для количественной и качественной оценки биологического эффекта доз ионизирующих излучений при внешнем и внутреннем облучении организма - необходима для обеспечения радиационной безопасности при работе с радиоактивными веществами - с ее помощью можно обнаружить источник излучения, определить его вид, количество энергии, а также степень воздействия излучения на облучаемый объект. Виды доз: а) экспозиционная доза (Х) - количественная характеристика поля источника ионизирующего излучения (гамма или рентгеновского), характеризующая величину ионизации сухого воздуха при атмосферном давлении. Кулон на килограмм (Кл/кг, C/kg) - системная единица экспозиционной дозы; 1 Кл/кг равен эксп-ной дозе фотонного излучения, при которой сумма электрических зарядов всех ионов одного знака, созданных электронами,освобожденными в облученном воздухе массой 1 кг, при полном использовании ионизирующей способности всех электронов, равна 1 Кл. Рентген (Р, R) - традиционная (внесистемная) единица экспозиционной дозы; 1 рентген равен экспозиционной дозе рентгеновского или гамма-излучения в воздухе, при которой в результате полной ионизации в 1 см3 сухого атмосферного воздуха при температуре 0о С и давлении 760 мм рт. ст. (т.е. в 0,001293 г сухого атмосферного воздуха) образуются ионы, несущие заряд, равный 1 единице заряда СГС каждого знака. СГС - система единиц измерения, в которой существуют три независимые величины: сантиметр-грамм-секунда. Соотношение единиц: 1 Р = 2,58*10-4 Кл/кг (точно); 1 Кл/кг = 3,88*103 Р (приблизительно). Мощность экспозиционной дозы - величина, выраженная в мР/ч или мкР/ч. Обычные фоновые показатели мощности эксп-ой дозы для Беларуси - до 18-20 мкР/ч. По традиции экспозиционную дозу использовали в рентгенодиагностике благодаря тому, что ионизирующая способность рентгеновского излучения для воздуха и биологической ткани приблизительно одинакова. Однако, при переходе к высокоэнергетическим типам излучения, выяснилась ограниченность использования этой характеристики при оценке поглощенной дозы, особенно в живых организмах. В связи с этим экспозиционная доза применяется для оценки поля источника излучения, а для определения взаимодействия ионизирующих излучений со средой используется поглощенная доза. б) поглощенная доза (D) - количество энергии, поглощаемое единицей массы облучаемого вещества. Джоуль на килограмм (Грей, Гр, Gy) - системная единица поглощенной дозы. 1 Дж/кг = 1 Гр. Рад (rad, rd - radiation absorbed dose - поглощенная доза излучения) - традиционная (внесистемная) единица поглощенной дозы. Соотношение единиц: 1 рад = 0,01 Гр. Для мягких тканей человека в поле рентгеновского или гамма-излучения поглощенная доза в 1 рад примерно соответствует экспозиционной в 1 P. Поглощенная доза не зависит от вида и энергии ионизирующего излучения и определяет степень радиационного воздействия, т.е. является мерой ожидаемых последствий облучения. Учитывая существенные различия в механизме взаимодействия разных типов излучения с веществом, ионизирующей способности и т.д., следует ожидать, что одна и та же поглощенная доза может дать разный биологический эффект. Для количественной оценки такого различия вводятся понятия: “взвешивающие коэффициенты для различных видов излучения (WR)” и “эквивалентная доза”. в) эквивалентная доза (HTR) - мера выраженности биологического эффекта облучения. При расчете эквивалентной дозы используют взвешивающие коэффициенты как множители поглощенной дозы: , где HTR - эквивалентная доза в органе или ткани Т, созданная излучением R; DTR- средняя поглощенная доза от излучения R в ткани или органе T; WR – взвешивающий коэффициент для излучения R. Взвешивающие коэффициенты (WR) позволяют учесть относительную эффективность различных видов излучения в индуцировании биологических эффектов. Так как WR - безразмерный множитель, системная единица для эквивалентной дозы та же, что и для поглощенной дозы - Дж/кг (специальное название - Зиверт: Зв, Sv) Бэр (rem) - внесистемная единица эквивалентной дозы (бэр - биологический эквивалент рада). Соотношение единиц: 1 бэр = 0,01 Зв. Взвешивающие коэффициенты для отдельных видов излучения.
Риск развития стохастических последствий облучения организма человека зависит не только от эквивалентной дозы, но и от радиочувствительности тканей или органов, подвергшихся облучению. Радиочувствительность органов и тканей учитывает эффективная доза. г) эффективная доза (Е) - величина воздействия ионизирующего излучения, используемая как мера риска возникновения отдаленных последствий облучения всего тела человека и отдельных его органов с учетом их радиочувствительности; представляет сумму произведений эквивалентных доз в тканях и органах тела на соответствующие взвешивающие коэффициенты: , где HT - эквивалентная доза в ткани или органе T; WT - взвешивающий коэффициент для органа или ткани T. Взвешивающий коэффициент WT характеризует относительный вклад данного органа или ткани в суммарный ущерб здоровью из-за развития стохастических эффектов. Сумма WT равна 1. Системная единица эффективной дозы - зиверт (Зв, Sv); внесистемная единица – бэр. 1 Зв равен 100 бэр. Для оценки эффектов облучения группы людей используют коллективные дозы: а) коллективная эквивалентная доза (ST) в ткани T - используется для выражения общего облучения конкретной ткани или органа у группы лиц; она равна произведению числа облученных лиц на среднюю эквивалентную дозу в органе или ткани. б) коллективная эффективная доза (S) - относится к облученной популяции в целом; она равна произведению числа облученных лиц на среднюю эффективную дозу. В определении коллективной эквивалентной и коллективной эффективной доз не указано время, за которое получена доза. Поэтому при расчете коллективных доз всегда должно быть четкое указание на период времени и группу лиц, по которым проводился данный расчет. Коллективные дозы используют для оценки лучевой нагрузки на популяцию и риска развития стохастических последствий действия ионизирующих излучений. Единицы коллективных доз – человеко-зиверт и человеко-бэр. «Подушная доза» (per caput dose, Зв) - значение коллективной дозы, разделенное на число членов облученной группы. 42. Радиационный фон: составляющие радиационного фона и их вклад в формирование эффективных доз облучения населения. Радиационный фон - доза облучения, формируемая на человека от природных источников и от радионуклидов, рассеянных в биосфере в результате деятельности человека. Радиационный фон воздействует на все население земного шара, в прошлом он неоднократно претерпевал резкие изменения, а в терпевал резкие изменения. настоящее время имеет относительно постоянный уровень. Составляющие радиационного фона (3,0 мЗв/год): 1. естественный радиационный фон - доза облучения, создаваемая космическим излучением, а также природными радионуклидами в земле, воде, воздухе, других элементах биосферы, пищевых продуктах и организме человека; вклад в формирование глобальной средней годовой эффективной дозы 2,4 мЗв/год а) внешнее облучение б) внутреннее облучение 2. техногенно измененный РФ - доза облучения, создаваемая в результате деятельности человека, в основном, за счет медицинских источников излучений, глобальных выпадений радионуклидов, стройматериалов, телевидения, авиации; это естественный радиационный фон, измененный в процессе деятельности человека; его вклад в формирование глобальной средней годовой эффективной дозы 0,6 мЗв/год а) внешнее облучение б) внутреннее облучение Естественный радиационный фон в РБ до 1986 года в тысячи раз был меньше, чем до аварии (в апреле-мае 1986 года мощности экспозиционных доз в южных районах Беларуси достигали десятков миллирентген в час). 43. Естественный радиационный фон: источники земного и внеземного происхождения, их вклад. Естественный радиационный фон - совокупность ионизирующих излучений от естественных источников внеземного и земного происхождения. Все живые организмы постоянно подвергаются воздействию ионизирующего излучения, которое всегда существовало в природе. Подушная эффективная доза за год во всем мире, создаваемая естественными источниками излучения, составляет 2,4 мЗв; индивидуальные дозы распределены в широком диапазоне: в любой большой популяции около 65 % людей будет иметь годовые эффективные дозы 1 – 3 мЗв, около 25 % меньше 1 мЗв и 10 % - больше 3 мЗв. Внеземное ионизирующее излучение. Источник излучений внеземного происхождения - первичное космическое излучение, состоящее в окрестностях Земли из: а) галактического космического излучения - генерируется в еще точно неизвестных, но удаленных от Земли объектах б) солнечных космических лучей. Средняя энергия космических частиц около 108 - 109 эВ. Первичное космическое излучение состоит из: 1. протонов (90%) 2. альфа-частиц 3. ядер легких элементов (лития, бериллия, бора и т.д.) 4. нейтронов 5. электронов - составляют около 1,5% потока всех космиче ских частиц 6. позитронов - составляют около 0,3% потока всех космических частиц 7. гамма-квантов и других излучений - обнаруживаются в небольшом количестве. Магнитное поле Земли заметно влияет на первичное излучение, препятствуя вхождению в атмосферу низкоэнергетических частиц. В магнитном поле Земли существуют "ловушки", являющиеся естественным резервуаром для накопления заряженных частиц, в основном протонов и электронов, - радиационные пояса Земли. Первичное космическое излучение поглощается атмосферой, в результате чего формируются: а) вторичное космическое излучение - состоит из ионов, протонов, нейтронов, мюонов (электроны с большой массой, живущие доли секунды), электронов и фотонов; его интенсивность зависит от толщины атмосферы: космическое излучение на уровне моря примерно в 100 раз менее интенсивно, чем на границе атмосферы и состоит в основном из мюонов; Северный и Южный полюса получают больше ионизирующих излучений, чем экваториальные области (за счет магнитного поля Земли). б) космогенные радионуклиды - при воздействии космических лучей на атмосферу, в ее верхних слоях происходят различные ядерные реакции, в результате чего образуются космогенные радионуклиды, основное значение из которых имеют: тритий (Н-3), С-14, Р-32, S-35, Be-7, Na-22 и Na-24. Земное ионизирующее излучение. Естественные источники ионизирующего излучения земного происхождения представлены радионуклидами 2 групп: А. Радионуклиды, входящие в радиоактивные ряды - см. вопрос 15. Б. Радионуклиды, не входящие в радиоактивные ряды - эта группа состоит из 11 долгоживущих радионуклидов (период полураспада от 107 до 1015 лет), наибольший вклад в формирование эффективной дозы из них вносят: а) Калий-40 - ядро претерпевает бета-распад, период полураспада 1,32*109 лет, является бета- и гамма-источником облучения, занимает 2 место как источник излучений, обусловливающих природный радиоактивный фон. В природе К-40 всегда сопутствует стабильному К-39 (доля К-40 - около 0,01%), формируя годовую эффективную дозу за счет внешнего облучения 0,12 мЗв и 0,18 мЗв за счет внутреннего облучения. Калий-40 часто обусловливает активность поверхностного слоя почвы, равную 1-2 Ки/км2. Активность растительного покрова Земли по К-40 равна (0,5-1)*10-8 Ки/кг сырого веса. Активность пищевых продуктов по К-40 составляет 10-9 Ки/кг сырых продуктов. Наибольшая активность К-40 регистрируется в клюкве, орехах, фасоли, картофеле. Из почвы К-40 поступает в растения, а затем с пищей в организм животных и человека; он практически полностью всасывается из ЖКТ и равномерно распределяется в органах и тканях. Радиоактивные изотопы калия поступают в организм и с водой. Тб калия составляет 58 суток. Суточная потребность человека в калии около 3 г, т.е. в организм может поступать и значительное количество К-40 б) Рубидий-87 - ядро претерпевает бета-превращение, период полураспада 4,8*1010 г, входит в состав продуктов деления урана. При пероральном поступлении практически полностью всасывается из желудочно-кишечного тракта и равномерно распределяется в органах и тканях. Тб из мягких тканей человека составляет 44 суток. Средняя доза облучения от естественных источников.
44. Радиоактивные ряды: понятие, основные дочерние радионуклиды. Радиоактивный ряд - это последовательность радионуклидов, образующихся в результате альфа- или бета-распада предыдущего элемента. Наиболее долгоживущие изотопы называются начальными для каждого из радиоактивных рядов. Вклад радиоактивных рядов в формирование годовой эффективной дозы облучения: 1,5 мЗв/год. Существует 4 радиоактивных ряда: 1) ториевый ряд - наиболее долгоживущий изотоп - торий-232 (Th-232), период полураспада - 1,4*1010 лет; 2,3) 2 урановых ряда - наиболее долгоживущие изотопы - уран-238 (U-238), период полураспада - 4,5*109 лет и уран-235 (U-235), период полураспада - 7*108 лет; 4) нептуниевый ряд - наиболее долгоживущий изотоп – нептуний-237 (Np-237), период полураспада - 2,2*106 лет. В настоящее время Th-232 почти весь сохранился, U-238 распался лишь частично, а U-235 распался большей частью, Np-237 распался почти весь. В процессе превращения этих элементов в качестве промежуточных продуктов распада образуются радиоактивные изотопы радия, радона, полония, висмута, свинца, которые формируют значительную дозу облучения чела. Уровни земной радиации неодинаковы для разных мест земного шара и зависят от концентрации радионуклидов в том или ином участке земной коры. Содержание радионуклидов повышено в породах вулканического происхождения (гранит, базальт), меньше радионуклидов в осадочных породах (известняк, песчаник). Наиболее высокие уровни земной радиации наблюдаются на пляжах Бразилии, на юго-западе Индии, где есть богатые торием пески (монацитовые пески). Места с высоким уровнем радиации есть во Франции, в Нигерии, на Мадагаскаре. Повышено содержание радионуклидов уранового ряда в Скандинавских странах и Англии. Глобальная средняя эффективная доза внешнего облучения, которую человек получает за год за счет гамма-излучения земного происхождения, составляет 0,5 мЗв. Продукты распада урана и тория по пищевым цепочкам, а также с воздухом и водой поступают в организм человека, обусловливая внутреннее облучение. При пероральном поступлении радиоактивных элементов важно учитывать их растворимость и, соответственно, коэффициент всасывания. Наибольшее значение в формировании дозы внутреннего облучения имеют Ra-226, Rn-220, Po-210 и Pb-210. а) Радий-226 (Ra-226) - претерпевает альфа-распад с образованием Rn-222, период полураспада - 1620 лет; широко распространен в природе, может поступать в организм через ЖКТ, органы дыхания и неповрежденную кожу. Его источником для человека в основном служат зерновые культуры и хлеб, куриные яйца; депонируется в костной ткани, из которой выводится с Tб, равным 17,13 лет (Тб – время, в течение которого из организма выводится половина введенного вещества). б) Радон - 222 (Rn-222) - претерпевает альфа-распад с образованием Ро-218, период полураспада - 3,8 суток; вносит основной вклад в естественную радиоактивность атмосферного воздуха и уровни облучения человека за счет естественных источников радиации. В организм радон и короткоживущие продукты его распада поступают в основном через органы дыхания, а также через ЖКТ (при питье радоновой воды и т.д.) и через кожу (при приеме радоновых ванн). Выведение Rn из организма осущ-ся ч/з легкие. в) Полоний-210 (Po-210) - подвергается альфа-распаду с образованием стабильного Pb-206, период полураспада - 138,38 сут. Повышенное поступления полония в организм наблюдается в регионах, где человек потребляет пищу морского происхождения, питается мясом северных оленей, а также у курящих. Из организма выводится с Tб 80 сут. г) Свинец(Pb-210) - подвергается бета-превращению (электронный распад) с образованием Bi-210, период полураспада 22,3 года; элемент остеотропен, его обмен связан с обменом Са и фосфора; из организма выводится с Tб, равным 12 - 10000 сут; один из источников появления в организме Po-210. 45. Радон и уровни облучения населения радоном. Оптимизация дозовых нагрузок, создаваемых радоном. Радон - это бесцветный, невидимый, не имеющий вкуса и запаха инертный газ, примерно в 7,5 раза тяжелее воздуха; образуется в процессе радиоактивного распада радионуклидов урановых и ториевого рядов. Существует три естественных (природных) изотопа радона: - радон-222 (Т1/2 - 3,8 дня; ряд распада U -238), - Rn-220 или торон (Т1/2 - 55 секунд; ряд распада Th-232), - Rn-219 или актинон (Т1/2 -4 секунды; ряд распада U-235). Все изотопы радона являются альфа-излучателями; дальнейший распад их дочерних продуктов сопровождается испусканием альфа- и бета-частиц. Большая часть радона и торона физически связана с материалом, в котором находятся их предшественники. Однако некоторая часть может диффундировать от места образования в другую среду. Из-за относительно большого периода полураспада радон-222 может диффундировать на большие расстояния (в пределах нескольких метров). Миграция актинона ограничивается несколькими миллиметрами и обычно он не достигает поверхности материала. Небольшая часть торона может выделяться и мигрировать в пределах нескольких сантиметров. Поэтому, за исключением богатых торием мест, концентрации радона-219 и 220 пренебрежимо малы, по сравнению с радоном-222. Основные источники радона: грунт, строительные материалы, грунтовые воды, природный газ, уголь, рудники, отвалы, образующиеся при добыче фосфорных удобрений, растения, геотермальные электростанции, предприятия ядерного топливного цикла. Главный источник поступления радона в атмосферу - почва и грунтовые породы. Средние конц-ии радона в почвенном воздухе на несколько порядков выше его конц-ий в атмосферном воздухе, вследствие чего происходит постоянное выделение почвенного радона в атмосферу путем диффузии. После выхода газа в окружающую водную или воздушную среду дальнейшее перемещение происходит за счет диффузии, конвекции и геомеханических сил. Факторы, влияющие на процесс попадания радона в воздух из почвы: а) снижающие интенсивность эксгаляции радона: дождь, снег, мороз, повыш. атмосферного давления (поэтому в почве радона больше зимой и в периоды дождей) б) усиливающие интенсивность эксгаляции радона: повышение температуры, увеличение скорости ветра Перенос и рассеяние радона в воздухе зависят от: а) вертикального градиента температур б) направления и силы ветра в) турбулентности воздуха. В результате процессов температурной конвекции и действия ветров в атмосфере происходит турбулентная диффузия, эффективно рассеивающая радон. Суточный максимум конц-и наблюдается в ночные часы, когда атмосфера наименее подвижна, а минимум наблюдается днем, когда вертикальное смешивание благодаря турбулентной диффузии максимально. На высоте нескольких метров от земли конц-я Rn падает уже в десятки раз. С геологической точки зрения более 40 % территории РБ являются потенциально радоноопасными. Наиболее потенциально радоноопасные территории: а) на юге - зоны, связанные с Микашевичско-Житковичским горстом и выступами Украинского кристаллического щита б) на западе республики - территория, связанная с Белорусским кристаллическим массивом. Содержание радона в почвенном воздухе зон активных разломов возрастает до 15,0-20,0 кБк/м3 (при среднефоновых концентрациях около 1,0 кБк/м3). В г. Минске эти разломы создают серьезную опасность радонового загрязнения воздуха жилых и производственных помещений. Обычная концентрация радона в домах 30 Бк/м3, в отдельных случаях она достигает в воздухе жилых помещений 400 Бк/м3 (напр Дзержинский р-н). Индивидуальные дозы облучения легких при этом могут достигать 20-30 мЗв/год. Радон и продукты его распада появляются внутри помещений вследствие их эксгаляции из стен, потолков, полов. Более радиоактивные материалы: фосфогипс, газобетон с квасцовым глинистым сланцем и отвалы урановых рудников, материалы с низкой активностью: дерево, природный гипс, песок и гравий. В новых помещениях среднегодовая эквивалентная равновесная концентрация Rn должна быть не выше 70 Бк/м3. В РБ в соответствии с НРБ-2000 предусмотрено: - при проектировании новых зданий жилищного и общественного назначения среднегодовая эквивалентная равновесная объемная активность дочерних продуктов радона и торона в воздухе помещений не должна превышать 100 Бк/м3, а мощность эффективной дозы гамма-излучения не должна превышать мощность дозы на открытой местности более чем на 0,2 мкЗв/ч - в эксплуатируемых зданиях среднегодовая эквивалентная равновесная объемная активность дочерних продуктов радона и торона в воздухе жилых помещений не должна превышать 200 Бк/м3. При более высоких значениях объемной активности должны проводится защитные мероприятия, направленные на снижение поступления радона в воздух помещений и улучшение вентиляции помещений. Защитные мероприятия должны проводится также, если мощность эффективной дозы гамма-излучения в помещении превышает мощность дозы на открытой местности более чем на 0,2 мкЗв/ч. Радон, содержащийся в воде, нередко бывает значительным источником радона и продуктов его распада в воздухе жилых и производственных помещений. При кипячении воды основная масса радона улетучивается. Концентрация радона в ванной комнате в 40 раз выше, чем в жилых комнатах. Основные источники радона в помещениях: трещины в плитах фундамента, поры в кирпичных стенах, трещины в строительных блоках, неполная изоляция грунта , плохое цементирование блоков, плохая герметизация труб, открытый верх фундамента, строительные материалы, вода. Суммарно концентрация радона в воздухе жилых помещений зависит от четырех факторов: - активной и пассивной диффузии радона из грунта ч/з фундамент и поверхности подвальных помещений зданий - эксгаляции радона из строительных материалов и изделий, из которых построено здание - эксгаляции радона из воды и газа - влияния климата, образа жизни, степени вентиляции. Меры, направленные на снижение концентрации радона в воздухе помещений (оптимизация дозовых нагрузок): - тщательная изоляция жилых помещений от почвы и грунта (герметичный бетонный цоколь) - изоляция стройматериалов (обычная покраска и оклеивание стен обоями) - улучшение вентиляции жилых помещений и активная вентиляция погребов - регулярная влажная уборка - использование материалов, отвечающих требованиям радиационной безопасности. Дозы облучения за счет радона. Глобальная средняя годовая эффективная доза внутреннего облучения за счет вдыхания радона 1,2 мЗв. Основную часть дозы человек получает в закрытых помещениях (концентрация радона в закрытых помещениях в зонах с умеренным климатом в среднем в 8 раз выше, чем в наружном воздухе). Концентрация дочерних продуктов распада превышает концентрацию радона более чем в 200 раз. Наиболее опасен ингаляционный путь посту-я в организм изотопов Rn и их дочерних продуктов распада, что связано с хорошей поглощаемостью органов дыхания. Полнота осаждения аэрозолей зависит от ряда факторов: - концентрации аэрозольных частиц и их физико-химического состояния - частоты и глубины дыхания, размеров частиц Из-за короткого периода нахождения в легких (акт дыхания) сам радон не играет роли первичного фактора, обусловливающего дозовую нагрузку на легкие, все дочерние продукты распада радона-222 (полоний-218, свинец-214, висмут-214, полоний-214 и свинец-210) также быстро удаляются из легких. |