Ответы на диффзачёт 2й курс. 1. Экологическая медицина понятие, цели, задачи. Вклад наследственности, пищевого статуса и свободнорадикального стресса в развитие экологически зависимых заболеваний
Скачать 0.86 Mb.
|
Увеличение активности изоформ цит. Р-450, участвующих в метаболизме гормонов, происходит в ответ на изменение гормонального статуса организма и существенно зависит от пола, возраста, периода репродуктивной активности животного Ингибиторы метаболизма ксенобиотиков в системе монооксигеназ —соединений, имеющих в своей структуре молекулу имидазольного кольца. Некоторые химические агенты (амфетамины, антибиотик олеандомицин) в результате метаболической активации способны жестко связывать цит. Р-450, полностью ингибируя его активность.Ингибиторами являются угарный газ, соли тяжелых металлов (Со, Сd, РЬ), хлороформ. Индукторы монооксигеназной реакции - это фенобарбитал, кордиамин и полихлорированные бифенилы. Цит. Р-450 - ключевой фермент в элиминации, детоксикации и метаболической активации экзогенных субстратов. • Элиминация. Окисление приводит к увеличению гидрофильности чужеродных соединений. Это способствует их выведению или ускоряет реакции последующей детоксикации • Детоксикация.потеря молекулой ее биологической активности, токсичности. • Метаболическая активация. продукт монооксигеназной реакции становится более активным соединением, чем молекула, из которой он образовался. образование из бенз[а]пирена окисленных производных связываться с ДНК, вызывая мутагенез и канцерогенез эстрогены могут быть метаболизированы цитохромом Р-450 путем образования 2-гидрокси-эстрона(снижает действие эстрогена и уменьшают риск рака молоч.ж-ы-избыточный вес подавляет, активная физическая деят. стимулирует) или 16-гидроксиэстрона(усиливает действие эстрогена и ув-т риск рака молочной железы- ускоряется жирной пищей) катаболизм лекарственного препарата местранола. Само лекарство имеет слабое сродство к эстрогеновым рецепторам. В процессе обезвреживания, т.е. деметилирования, оно превращается в этинилэстрадиол. резко увеличивается сродство к рецепторам, что позволяет активно вмешиваться в функц-ние эндокринной системы. 16. Элиминация ксенобиотиков. Конъюгация ксенобиотиков: понятие, ферменты, участвующие в реакциях конъюгации, регуляция их активности. Ксенобиотики – это любые чужеродные для организма соединения, которые способны вызывать в нем определенные изменения, в том числе заболевания и гибель. Элиминация. Липофильные молекулы с трудом выводятся из биологических мембран, т.к. образуют гидрофобные связи с молекулами мембранных структур. Окисление определенных групп молекулярным кислородом в результате монооксигеназных реакций приводит к увеличению гидрофильности чужеродных соединений. Это способствует их выведению или ускоряет реакции последующей детоксикации, как правило, с участием ферментов, осуществляющих их конъюгацию с белками, что значительно облегчает выведение этих соединений из организма. Реакции конъюгации — это реакции биосинтеза, которые протекают с потреблением энергии. Важным обстоятельством этих реакций является особенность их внутриклеточной локализации. Значительная часть реакций конъюгации протекает на мембранах эндоплазматической сети клеток, непосредственно в месте образования под влиянием оксидаз со смешанными функциями высокореактивных метаболитов. Это позволяет свести до минимума токсическое действие промежуточных продуктов метаболизма ксенобиотиков. Ферменты, участвующие в реакциях конъюгации: Глютатион-8-трансфераза (ГТ-аза) - детоксифицирующий фермент, который катализирует реакцию взаимодействия глютатиона с токсичными электрофильными соединениями, приводя к образованию менее ядовитых и более растворимых в воде компонентов, которые могут быть легко экскретированы из организма. Компоненты, стимулирующие активность ГТ-азы, рассматриваются как ингибиторы злокачественного процесса. Вещества, способные стимулировать деятельность ГТ-азы, включают фталиды в семенах сельдерея, аллилсульфиды в чесноке и луке, дитио-тионы и изотиоцианаты в брокколи и других овощах, лимоноиды в цитрусовых. Один из шести индивидуумов в популяции (примерно 17% населения) наследует от родителей дефектный по глютатион-8-трансферазеген. По активности этого энзима всех людей можно разделить на три группы: клетки которых не способны к конъюгации, слабоконъюгирующие и высококонъюгирующие. Детоксикация ксенобиотика может происходить путем его конъюгации с глюкуроновой кислотой, сульфатом, глицином. Введение в организм D-глюкаровой кислоты (сахарная кислота) способствует образованию D-глюкаро-у-лактона (сахаролактона), который ингибирует превращение УДФ-D-глюкуроновой кислоты в глюкуроновую кислоту. Данный процесс катализируется B-глюкоронидазой, для которой упомянутый лактон является ингибитором. В свою очередь, накопление активной формы глюкуроновой кислоты будет способствовать реакции образования глюкуронидов, т.е. процессу обезвреживания чужеродных для организма соединений. Глюкаровая кислота входит в состав фруктов, а также выпускается в виде биологически активной добавки к пище. Множественные формы ферментов (изоферменты) -ГТ-аза, УДФ-глюкуронил-трансфераза и сульфотрансфераза - также выражены в организме млекопитающих. Образующиеся при этом соединения выводятся из организма через почки, легкие, кишечник, слюнные, потовые и сальные железы. 17. Вредные химические вещества естественного происхождения. Биогенные амины. Пищевые продукты представляют собой сложные многокомпонентные смеси, состоящие из сотен химических соединений. В состав пищевых продуктов входят, в основном, три группы соединений. Нутриенты - белки, липиды, углеводы, минеральные вещества и витамины, которые требуются организму для пластических целей, в качестве источников энергии, для нормального течения процессов пищеварения и метаболизма. Неалиментарные компоненты - соединения, участвующие в формировании органолептических качеств пищевого продукта. К ним относятся: предшественники нутриентов, продукты их распада, а также другие биологически активные вещества. Большинство веществ этой группы находится в продуктах питания в незначительных количествах. Среди них различают:
Содержание тирамина в продуктах питания составляет в среднем около 50 мкг/г. Однако в некоторых их них (шоколаде, сыре, пиве, вине и квашеной капусте) тирамин содержится в повышенных количествах. Сыр может содержать до 900 мкг/г.Пациентам с высоким кровяным давлением частое употребление этих продуктов питания может быть небезвредно. 2)серотонин (бананах, грецких орехах, помидорах), увеличивает кровяное давление. 3) гистамин, (некоторых сортах вин, где его содержание может достигать 25 мг на литр), способен вступать в соединение с этанолом. Прием значительных количеств гистамина ведет к острой интоксикации у человека, которая выражается сильными головными болями и спазмами гладкой мускулатуры. Содержание БА в продуктах питания может был. снижено промывкой водой или сменой консервирующей жидкости. 18. Ртуть (Hg) - токсичный загрязнитель пищевых продуктов и воды. Проведение демеркуризации в быту. Ртуть-рассеянный элемент.В атмосферу поступает как в ходе природных процессов(испарение со всей поверхности суши; возгонка ртути из соединений, находящихся в толще земной коры ; вулканическая деятельность), так и за счёт антропогенной деятельности(пирометаллургия; цветная металлургия; сжигание любого органического топлива. Поступившие в атмосферу пары ртути сорбируются аэрозолями, почвой, вымываются атмосферным осадками, включаясь в круговорот в почве и в воде( ионизируются, превращаются в соли, подвергаются метилированию, усваиваются растениями и животными). Метилирование неорганической ртути-ключевой этап процесса миграции ртути по пищевым цепям водных экосистем. Метилирование ртути микроорганизмами подчиняется следующим закономерностям: 1)преобладающий продукт биол.метилирования ртути при РН, близком к нейтральному, - метилртуть 2)сорость метилирования при окислительных условиях выше, чем при анаэробных 3) кол-во образуемой метилртути удваивается при десятикратном увеличении содержания неорганической ртути Ртуть постоянно присутствует в теле человека, но не является эссенциальным микроэлементом. Ртуть отличается высокой токсичностью для любых форм жизни. Токсическое действие ртути зависит от вида соединения: алкилртутные соединения токсичнее неорганических. Наиболее токсичны метилртуть, этилртуть- короткоцепочечные.Они больше накапливаются в организме, лучше растворяются в липидах, легче проникают через биологические мембраны. Чувствительность нервной системы к метил и этилртути высока. В организм человека ртуть может попадать с продуктами питания растительного и животного происхождения, продуктами моря, атмосферным воздухом и водой. В производственных условиях основное значение имеет поступление ртути в организм через дыхательные виде паров или пыли. Пары ртути полностью задерживаются в дыхательных путях, если концентрация их в воздухе не превышает 0,25мг/м3. Резорбция ртути в пищеварительном тракте зависит от вида соединения: резорбция неорганических соединений составляет 2-15%, фенилртути-50-80%,метилртути-90-95%. Метилртуть стабильна в организме, др. соединения быстрее трансформируются в неорганические.Ртуть преимущественно накапливается в почках, селезёнке и печени. Органические соединения с белками легко проникают через гематоэнцефал. и плацентарный барьеры и накапливаются в голов.мозге,в том числе и плода, где их концентрация в 1,5-2 раза больше, чем у матери. В мозговой ткани метилртути содержится в 5-6 раз больше, чем в крови. Неорганические соединения ртути нарушают обмен аскорбиновой кислоты, пиридоксина, кальция, меди, цинка, селена. Органические соединения-обмен белков, цистеина, аскорбиновой кислоты, токоферолов, железа, меди, марганца, селена. Выводится ртуть из организма железами ЖКТ, почками,потовыми и молочеными железами, лёгкими. В грудном молоке обычно содержится 5% от концентрации её в крови. Неорганические соединения выделяются преимущественно с мочой(период полувыведения-40 сут), а органические-на 90% с калом и желчью(период полувыведения из организма-76 сут). Из организма новорождённых ртуть выводится медленнее. Она выводится из организма неравномерно. По мере выделения ртуть мобилизуется из депо. Ртуть накапливается преимущественно в ядре клетки, затем по убыванию:в микросомах, цитоплазме, митохондриях.В основе механизма действия ртути лежит блокада биологически активных групп белковой молекулы и низкомолекулярных соединений с образованием обратимых комплексов, характеризующихся нуклеофильными лигандами. Установлено включение ртути в молекулу тРНК. В начальные сроки воздействия малых концентраций трути имеет место значительный выброс гормонов надпочечников и активирование их синтеза. Наблюдается возрастание моноаминооксидазной активности митохондриальной фракции печени. Пары ртути проявляют нейротоксичность, от чего особенно страдают высшие отделы ЦНС. Вначале возбудимость коры повышается, затем приобретает инертность. В дальнейшем развивается запредельное торможение. Неорганические соединения ртути обладают нефротоксичностью. Есть сведения о гонадотоксическом, эмбриотоксическом и тератогенном действии соединений ртути. Основные проявления хронического воздействия малых концентраций ртути: повышенная нервозность, ослабление памяти, депрессия, парестезия, мышечная слабость, эмоциональная лабильность, нарушение координации движений, симптомы поражения почек.К данным симптомам могут присоединяться симптомы поражения серд-сосуд сис-мы. Всё это обусловлено воздействием ртути на энзиматическую активность клеток, увеличением концентрации внутриклеточного кальция, ингибированием синтеза ДНКи РНК Болезнь Минамата - ртутная интоксикация алиментарного происхождения, обусловленная употреблением в пищу рыбы и др гидробионтов, выловленных из водоёмов, загрязнённых ртутью(Япония) При попадании любого кол-ва ртути в жилую зону следует выполнить следующие мероприятия:1)Изоляционные мероприятия: необходимо изолировать местонахождение ртути и само помещение. Надеть марлевую повязку и вывести из помещения всех жильцов. Открыть окна помещения и накрыть место с ртутью мокрой газетой. Загрязнённые вещи вынести из помещения. Плотно закрыть входную дверь и заклеить щель. 2)Мероприятия по снижению испаряемости ртути: снизить температуру в помещении (открыть окна). Прекратить действия в данном помещении. Изолированное помещение оставить на несколько часов. 3) Механическая демеркуризация: надеть одежду из синтетического материала, работать в резиновых перчатках. Необходимо приготовить стеклянную банку с крышкой, толстую иглу или вязальную спицу, мед .шприц, кусочки пластыря, лист плотной бумаги, настольную лампу. Смысл этого этапа состоит сборе капель в герметичную ёмкость. Для закатывания капель на лист бумаги используют толстую иглу или спицу. Поверхность подсвечивают настольной лампой. Кусочки пластыря используют для сбора мелких капель. С помощью мед шприца и толстой иглы ртуть достают из щелей. Не рекомендуется пользоваться пылесосом. Банку с собранной ртутью обязательно отдать представителям МЧС. 4) Химическая демеркуризация: для этого необходим раствор с окислительными свойствами. На литр воды добавляют несколько кристаллов марганцовки, столовую ложку соли и столовую ложку уксусной эссенции. Наносить раствор на места, где производили сбор ртути, особенно в щелях. Раствор следует оставить нанесённым на 6-8 часов, периодически смачивая водой обработанную поверхность. В заключение обработанную поверхность следует тщательно промыть всё помещение. 19. Кадмий (Cd) - токсичный загрязнитель пищевых продуктов и воды: источники поступления в продукты. Кадмий( 0,001 мг/л). В среднем в организм человека поступает около 10 нг кадмия в день. В ЖКТ резорбируется примерно до 5% кадмия. После всасывания кадмий в кровотоке связывается с альбумином и транспортируется в печень и почки. Там индуцируется синтез металлсвязывающего протеина металлотинеина. После поступления в тубусные клетки Cd из комплекса металлотинеин-Cd отщепляется. Эта несвязанная форма кадмия представляет собой токсичный компонент, который при концентрации свыше 200 мг/кг приводит к поражению почек. Металлотинеин - термостабилен, молекулярная масса 5000-6000 дальтон. Отличительная его особенность- отсутствие в первичной структуре ароматических АК и наличие до 20 свободных SH-групп аминокислоты цистеина, которые подразделяются на 2 связывающих кластера(Cd3 и Cd4). Биологический период полувыведения кадмия из печени и мышечной ткани составляет 10-35 лет. В организме курильщиков содержатся в 3-4 раза более высокие концентрации кадмия. Накопление кадмия связано с дегенеративными изменениями слизистой носа, глотки, разрушением обонятельного эпителия, обструктивными заболеваниями ВДП и тяжёлыми поражениями почек. Впервые наблюдали интоксикацию в Японии в 1946 году при отравлении содержащими кадмий продуктами. Она сопровождалась остеомаляцией, остеопорозом и железодефицитной анемией(болезнь итай-итай), а также деформацией скелета вследствие нарушений обмена фосфата и витамина Д3.Механизм воздействия кадмия таков: В организме человека из витамина Д3 образуется в печени 25-гидрокси-Д3(25-ОН-холекальциферол, 25-ОН-Д3). В тубусных клетках почки из 25-ОН-Д3 образуется активный метаболит витамина Д3 1, 25-дигидрокси-Д3( 1, 25-(ОН)2-холекальциферол, 1, 25-(ОН)2-Д3).1,25-(ОН)2-Д3 активизирует освобождение кальция из костей и стимулирует резорбцию ионов кальция из тонкой кишки в плазму. Кадмий тормозит оба механизма. Кроме того, кадмий тормозит захват кальция в тубусных клетках почек и инактивирует в них фермент аденилатциклазу. Помиио этого, накопление кадмия может быть сопряжено с почечной артериальной гипертензией, мутагенным(но не канцерогенным) эффектом. |