Ответы на диффзачёт 2й курс. 1. Экологическая медицина понятие, цели, задачи. Вклад наследственности, пищевого статуса и свободнорадикального стресса в развитие экологически зависимых заболеваний
Скачать 0.86 Mb.
|
Часть продуктов распада радона, образующихся в воздухе помещений, взаимодействует с аэрозольными частицами и формирует основную дозу облучения. Связанные продукты распада радона могут накапливаться при дыхании в носоглотке, трахее, легочной паренхиме. Осевшие частицы подвергаются распаду путем испускания альфа-, бета-частиц или гамма-квантов, при этом опасность представляет в основном альфа-излучение. Тканью-мишенью накопления дочерних продуктов распада радона в дыхательном тракте является эпителий в трахеобронхиальной области и альвеолярная область в легких. Биологический период полувыведения продуктов распада радона составляет от 10 мин до 4,8 час для трахеобронхиальной области и от 6 до 60 час для легких Наиболее важными факторами, влияющими на формирование дозы на дыхательный тракт, являются: - концентрация радона в помещениях; - фактор равновесия продуктов распада; - характеристика аэрозолей, их задержание и очистка в дыхательных путях; - величина дыхания; В настоящее время считается, что концентрация радона в помещениях в 20 Бк/м3 увеличивает дозу облучения на 1 мЗв. Доза на дыхательный тракт сильно зависит от возраста, она максимально в возрасте около 6 лет (ротовое дыхание у ребенка ведет к большему поступлению радона, чем дыхание через нос). Медицинские последствия облучения радоном: - радон - эпидемиологически доказанный фактор риска рака легкого (на втором месте после курения) - растворимость радона в липидах примерно в 15 раз выше, чем в крови, а костный мозг взрослых содержит до 40 г жира, поэтому в тот же возрастной период, когда у человека формируется максимальная эффективная доза от облучения радоном, наблюдается всплеск заболеваемости острым миелоидным лейкозом. 46. Ядерная энергетика. Авария на ЧАЭС, динамика выброса во времени и в пространстве.. Ядерный топливный цикл включает следующие стадии: 1. добыча урановой руды 2. переработка урановой руды в обогащенное U-235 ядерное топливо 3. производство тепловыделяющих элементов, которые состоят из урана в металлической, карбидной или оксидной форме, заключенного в оболочку из циркония, магниевого сплава или нержавеющей стали 4. использование тепловыделяющих элементов на АЭС (нормальная эксплуатация АЭС) 5. переработка отработанного ядерного топлива (для последующего использования извлеченного делящегося материала, в частности, урана и плутония) 6. переработка и захоронение образующихся радиоактивных отходов. Обязательно надо помнить о транспортировке радиоактивных материалов для обеспечения всех этих стадий. Загрязнение окружающей среды радионуклидами происходит на всех стадиях ядерного топливного цикла, но наибольший вклад вносят: а) переработка отработанного ядерного топлива на радиохимических заводах (основное значение имеют радионуклиды С-14, Kr-95, H-3, I-129) б) нормальная эксплуатация АЭС: при нормальной работе реактора в окружающую среду после прохождения системы очистки удаляются газообразные (частично аэрозольные) и жидкие отходы (основное значение имеют радионуклиды I-131, Cs-137 и 134, Sr-90, а также радиоактивные инертные газы). В настоящее время рассчитанное значение максимальной подушной дозы за счет использования ядерной энергетики составляет менее 0,2мкЗв в год. Оценивая опасность нормальной работы АЭС для человека, необходимо отметить, что проживание вблизи угольной теплоэлектростанции мощностью 1000 МВт, с учетом выбросов природных радионуклидов (K-40,U-238,Th-232,Pb-210, Po-210) и химических канцерогенов (бензпирены), в сотни раз более опасно, чем проживание вблизи АЭС аналогичной мощности. Авария на Чернобыльской атомной электростанции. Чернобыльская АЭС (ЧАЭС) находится на Украине, в 12 км от южной границы РБ. 26 апреля 1986 г. на 4-ом блоке ЧАЭС произошла крупная авария, которая резко изменила радиоэкологическую ситуацию в Беларуси. По Международной шкале событий на АЭС, предложенной МАГАТЭ и Европейского агентства по атомной энергии, авария на ЧАЭС относится к 7-му классу и именуется глобальной аварией. Катастрофа на 4-ом блоке ЧАЭС, которая произошла в результате взрыва пара, снесшего крышу здания, разгерметизации активной зоны и возникшего пожара, сопровождалась выбросом в окружающую среду значительного количества радиоактивных веществ (около 10 ЭксаБк). Выброс газо-аэрозольной струи, достигшей 1,5 км, был длительным (10 суток), неравномерным по количеству выбрасываемых радионуклидов, при постоянно меняющихся метеоусловиях (направление ветра, осадки). Динамика выброса радионуклидов в пространстве. Формирование радиоактивного загрязнения РБ началось сразу после взрыва реактора, т.к. радиоактивное облако перемещалось с воздушными потоками в с-з и северном направлениях. Около 70% радиоактивных веществ, выброшенных из разрушенного реактора в атмосферу, в результате сухого и влажного осаждения выпали на территорию Беларуси. При этом 23% территории РБ с 3221 населенными пунктами, в том числе 27 городов, где проживало 2,2 млн. человек (из них более 400 тыс. детей), оказалось загрязненной цезием-137 более 1 Ки/км2. Радиоактивное загрязнение распространилось по всем областям республики. Оно имеет неравномерный "пятнистый" характер, что обусловлено динамикой выброса и постоянно меняющимися метеоусловиями. Максимальные уровни загрязнения были обнаружены в 30-километровой зоне вокруг АЭС (зоне отчуждения): по цезию-137 - 500 Ки/км2, по стронцию-90 - более 12 Ки/км2, по плутонию-239,240 - около 4 Ки/км2. За пределами зоны отчуждения также выявлены участки с высокими уровнями загрязнения (д. Чудяны Могилевской области). В пределах некоторых населенных пунктов отмечалось большое различие уровней загрязнения почвы цезием-137. 1. Загрязнение территории РБ по цезию-137 - самые пострадавшие области: а) Гомельская б) Могилевская в) Брестская (Столинский, Пинский, Лунинецкий, Дрогичинский, Березовский, Барановичский районы) В Минской, Гродненской и 4-х населенных пунктах Витебской области содержание цезия-137 в почве превышает 37 кБк/м2 (1 Ки/км2). На остальной территории РБ уровни загрязнения почвы цезием-137 также выше доаварийных значений и лишь в северо-западных районах Витебской области сопоставимы с глобальными выпадениями. 2. Загрязнение территории РБ Sr-90 - в отличие от загрязнения Cs-137 имеет более локальный характер: - уровни содержания стронция-90 в почве выше 5,5 кБк/м2 (0,15 Ки/км2) обнаружены на площади, составляющей 10% от территории РБ - максимальные уровни стронция-90 обнаружены в пределах 30-км зоны ЧАЭС (около 49 Ки/км2) в Хойникском районе Гомельской области - наиболее высокое содержание стронция-90 в почвах дальней зоны обнаружено в Чериковском районе Могилевской области и в Ветковском районе Гомельской области 3. Загрязнение территории РБ по плутонию – 238-240. - уровни загрязнения почвы изотопами плутония-238, 239, 240 более 0,37кБк/м2 (0,01 Ки/км2) охватывает почти 2% площади республики (Брагинский, Наровлянский, Хойникский, Речицкий, Добрушский и Лоевский районы Гомельской области и Чериковский район Могилевской области) - наиболее высокий уровень изотопов плутония отмечен в Хойникском районе Газо-аэрозольное облако имело радионуклидный состав, однозначно характеризующий источник выброса: в него входили изотопы 27 радионуклидов. Радионуклидный состав выпадений, особенно в первые недели после аварии, имеет существенное значение для ретроспективной оценки доз облучения жителей ближайших к станции населенных пунктов, персонала станции и лиц, принимавших участие в аварийно-восстановительных и дезактивационных работах. В окружающую среду были выброшены: - летучие радиоактивные инертные газы; - сотни осколочных продуктов деления, накопившихся в зоне реактора; - изотопы наведённой радиоактивности за счет веществ, которые сбрасывали на реактор; - частички ядерного топлива. Сразу после аварии радиационная обстановка и формирование дозовых нагрузок на население определялись действием короткоживущих радионуклидов (молибдена, технеция, лантана, бария, благородных инертных газов, радиоизотопов йода-131, 132, 133, 134, 135, 123, 125, 126). В окружающую среду было выброшено 50-60% накопившихся в реакторе радиоизотопов йода. Уровни радиоактивного загрязнения короткоживущими радионуклидами йода во многих регионах РБ были настолько велики, что вызванное ими облучение миллионов людей квалифицируется как период "йодного удара". В апреле - мае 1986 года наибольшие уровни выпадения йода-131 имели место в: а) до 1000 Ки/км2 - в Брагинском, Хойникском, Наровлянском районах Гомельской области б) до 500 Ки/км2 - в Чечерском, Кормянском, Буда-Кошелевском, Добрушском районах Значительному загрязнению радиоизотопов йода подверглись также юго-западные регионы РБ (Гомельская и Брестская области), север Гомельской и Могилевской областей.
Типы воздействия радионуклидов: 1. внешнее гамма-облучение от радиоактивного облака - было недолгим и продолжалось до формирования радиоактивного следа на местности и объектах окружающей среды; вклад в формирование дозы в первый послеаварийный год 2,5%. 2. ингаляционное поступление радионуклидов в организм человека - формирует 4,5% дозы за счёт внутреннего облучения организма. Аэрозольное загрязнение атмосферного воздуха делится на 2 этапа: а) относительно кратковременный - момент выброса газо-аэрозольной струи в атмосферный воздух, формирование и перенос радиоактивных облаков до момента их осаждения на поверхность земли, воды, объекты окружающей среды (ингаляционное поступление радионуклидов из радиоактивного облака). б) непрерывный - вторичное загрязнение атмосферы за счёт ветрового подъёма пыли. Загрязнение приземного слоя атмосферы в результате ветровой эрозии почвы является дополнительным фактором загрязнения территории радионуклидами. Мельчайшие аэрозольные частички переносятся с воздухом на большие расстояния вследствие медленной седиментации. В ряде случаев перенос радиоактивной пыли обуславливал повторное загрязнение дезактивированных территорий. Особую опасность вторичное загрязнение атмосферы радионуклидами за счет ветрового подъема пыли представляет для населения, постоянно проживающего и работающего на загрязненной территории. 3. внешнее гамма-излучение от осевших на земную поверхность и объекты окружающей среды радионуклидов - обуславливает самое длительное и интенсивное облучение, формирует около 50-60% дозы у населения. Определяется, в основном, гамма-излучением цезия-137 и другими гамма-излучающими радионуклидами. Основные факторы, уменьшающие внешнее гамма-излучение: 1) естественный распад радионуклидов - в настоящее время доза на организм человека формируется за счет долгоживущих радионуклидов: а) цезия-137 (период полураспада 30 лет) б) стронция-90 (период полураспада 29,1 лет) в) трития (период полураспада 12 лет) г) углерода-14 (период полураспада 5730 лет) д) плутония-239 (период полураспада более 24000 лет) 2) миграция радионуклидов вглубь почвы - она незначительная: основная масса цезия-137 спустя 12 лет после аварии сосредоточена в верхнем 5-сантиметровом почвенном слое, основная часть радиостронция находится в поверхностных слоях (0-1 см) почвы. Наиболее интенсивно вертикальная миграция протекает в торфяниках; прогнозы показывают, что самоочищение почв вследствие данного процесса будут происходить крайне медленно. Нахождение радионуклидов в корнеобитаемом слое, а также увеличение относительного количества обменного стронция в поверхностных слоях почв будут длительное время обуславливать интенсивную миграцию радионуклидов по пищевым цепочкам. 4. попадание радионуклидов в организм по пищевым цепочкам - данный тип воздействия имеет особое значение для РБ, связанный с особенностями почв (преимущественно на Полесье). Среди загрязненных радионуклидами земель РБ больше половины составляют почвы легкого гранулометрического состава, характеризующиеся низкой емкостью поглощения, малым содержанием гумуса и вторичных глинистых минералов. В легких почвах республики радионуклиды цезия-137 и стронция-90 аномально подвижны, т.е. они плохо связываются частицами почвы и поэтому коэффициент перехода их в растения высокий. Хорошо фиксирует радионуклиды чернозем, глинистая почва, а в Белорусском Полесье почва песчаная, подзолистая, торфяно-болотная, т.е. легкая. Все это определяет высокие уровни накопления радионуклидов в местных продуктах питания и высокие дозовые нагрузки на организм проживающего там населения (Лельчицкий район Гомельской области, Столинский и Лунинецкий районы Брестской области). Принципы формирования доз облучения населения после аварии на ЧАЭС. Радиотоксичность – свойство радиоактивных изотопов вызывать большие или меньшие патологические изменения при попадании их в организм, обусловленное рядом факторов: 1) видом радиоактивного превращения 2) средней энергией одного акта распада 3) схемой радиоактивного распада 4) путями поступления радионуклида в организм 5) типом распределения радионуклида в организме 6) временем пребывания радионуклида в организме - определяется длительностью облучения тканей, в котором локализован изотоп; зависит от периода полураспада изотопа (Т1/2 ) и от скорости его выведения из организма Период полувыведения (Тб) - время, в течение которого из организма выводится половина введенного радионуклида; характеризует скорость выведения радионуклида из организма. Эффективный период (Тэфф) – время, в течение которого активность изотопа в организме уменьшается вдвое. Тэф= Т1/2*Тб / Т1/2 + Тб 7) продолжительностью времени поступления в тело человека. Принципы формирования доз облучения населения после аварии на ЧАЭС. В апреле-мае 1986 года мощности экспозиционных доз в южных районах Беларуси достигали десятков миллирентген в час, то есть превышали в тысячи раз естественный фон Беларуси до аварии,что явилось основанием для эвакуации части населения из загрязненных радионуклидами территорий. С мая 1986 года правительственной комиссией устанавливались Временные нормативы по дозовым нагрузкам для населения: 1986-1987 гг. – 100 мЗв/год, , 1991 год – 5 мЗв/год, 1998 – 1 мЗв/год. При этом предполагалось, что 50% дозы формирует внешнее облучение, 50% - внутреннее. Особенность формирования доз облучения населения, проживающего на загрязненных территориях: 1) пролонгированное внешнее и внутреннее облучение за счет долгоживущих радионуклидов (Сs, Sr, Рu) в дополнение к дозам, сформировавшимся на раннем этапе аварии за счет короткоживущих радионуклидов (особенно радиоизотопов йода) 2) определенная часть населения вынуждена жить на загрязненных радионуклидами территориях, используя в пищу продукты местного производства, которые формируют основную дозовую нагрузку на организм (более 80%). При этом сельские жители получают гораздо большие дозовые нагрузки, чем городские 3) при одинаковом питании со взрослыми дети получают в 3-5 раз большие дозовые нагрузки в силу меньшего веса и более активных обменных процессов в детском организме. Основные пути проникновения радионуклидов в организм, типы их распределения в организме. Попадание радиоактивных веществ внутрь организма человека представляет особую опасность, т.к. концентрация их в органах может во много раз превысить таковую в окружающей среде. Поведение радионуклидов в организме (пути и способы поступления, распределения по органам и системам, скорость и пути выведения) обусловлены их химическими свойствами. 1) ингаляционный путь - при вдыхании загрязненного радиоактивными аэрозолями воздуха. Радиоактивные вещества задерживаются на всем протяжении дыхательного тракта от преддверия носа до глубоких, альвеолярных отделов легких. Чем меньше диаметр вдыхаемых частиц, тем относительно меньше их задерживается в верхних дыхательных путях, в бронхах и тем больше проникает в альвеолярные отделы легких, где отсутствуют механизмы, способные выводить попавшие частицы в бронхи и трахею. а) растворимые или труднорастворимые радионуклиды, осевшие на слизистой верхних дыхательных путей, трахеи, бронхов быстро с помощью мерцательного эпителия переводятся в глотку и ротовую полость, откуда поступают в желудок б) растворимые радионуклиды, попавшие в альвеолярный отдел легких, хорошо и быстро всасываются в кровоток, чему способствует широко развитая сеть капилляров в) радионуклиды, образующие радиоколлоиды или труднорастворимые гидроксиды и попавшие в альвеолярный отдел легких, фагоцитируются и распределяются неравномерно в легочной ткани; после проникновения в лимфатические сосуды они медленно поступают в лимфатические узлы легкого, трахеи и средостения, затем еще медленнее - в кровеносные сосуды. Общая величина труднорастворимых радиоактивных веществ, поступающих в организм через легкие, гораздо выше, чем через кишечник, из-за большой поверхности всасывания легких. По скорости выведения из легких все радионуклиды разделяются по времени биологического полувыведения (Тб) на три класса: |