Ответы к кандидатскому экзамену по философии. 1. Философия и наука, их взаимосвязь и различие
Скачать 489.28 Kb.
|
24. Общие закономерности развития науки. В гносеологии выделяются шесть основных закономерностей развития науки (см., например, [31]). 1. Обусловленность развития науки потребностями общественно-исторической практики. Это главная движущая сила, или источник развития науки. При этом подчеркнем, что обусловлена она не просто потребностями практики, например, педагогической, образовательной, а именно – общественно-исторической практики. Каждое конкретное исследование, в том числе докторская диссертация, может и не обусловливаться конкретными запросами практики, а вытекать из логики развития самой науки или, к примеру, определяться личными интересами ученого. Например, как шутят научные работники, когда ученый не знает, что он делает – это называется фундаментальным исследованием. 2. Относительная самостоятельность развития науки. Какие бы конкретные задачи ни ставила практика перед наукой, решение этих задач может быть осуществлено лишь по достижении наукой определенного соответствующего уровня, определенных ступеней развития самого процесса познания действительности. При этом от ученого нередко требуется определенное мужество, когда его научные взгляды, его научные построения идут «вразрез» с установками того или иного министерства или с действующими нормативами, документами и т.п. 3. Преемственность в развитии научных теорий, идей и понятий, методов и средств научного познания. Каждая более высокая ступень в развитии науки возникает на основе предшествующей ступени с сохранением всего ценного, что было накоплено раньше. 4. Чередование в развитии науки периодов относительно спокойного (эволюционного) развития и бурной (революционной) ломки теоретических основ науки, системы ее понятий и представлений. Эволюционное развитие науки – процесс постепенного накопления новых фактов, экспериментальных данных в рамках существующих теоретических воззрений, в связи с чем идет расширение, уточнение и доработка уже принятых ранее теорий, понятий, принципов. Революции в науке наступают, когда начинается коренная ломка и перестройка ранее установившихся воззрений, пересмотр фундаментальных положений, законов и принципов в результате накопления новых данных, открытия новых явлений, не укладывающихся в рамки прежних воззрений. Но ломке и отбрасыванию подвергается при этом не само содержание прежних знаний, а их неверное истолкование, например, неправильная универсализация законов и принципов, имеющих в действительности лишь относительный, ограниченный характер. Так, например, в сфере гуманитарных, общественных наук мы сегодня находимся, очевидно, на этапе их революционного развития. При этом нередко встречаются попытки, в том числе в докторских диссертациях, отбросить все, что было наработано этими науками за годы советской власти, и начать как бы «все сначала»; или вернуться к исходным позициям до 1917 г. или даже до 1913 г. Но, как говорится, «из песни слов не выкинешь» – ученый должен быть объективен и учитывать то хорошее, созидательное, что было достигнуто во все периоды истории. 5. Взаимодействие и взаимосвязанность всех отраслей науки, в результате чего предмет одной отрасли науки может и должен исследоваться приемами и методами другой науки. В результате этого создаются необходимые условия для более полного и глубокого раскрытия сущности и законов качественно различных явлений. Сегодня мы наблюдаем, например, стремительное проникновение математики в экономику; экономики, юриспруденции, психологии в педагогику и т.д. Это, безусловно, положительные явления. И попытки интеграции наук в докторских диссертациях можно только приветствовать. Но при этом каждый диссертант должен четко представлять себе, что если он собирается защищать диссертацию по экономическим наукам, то его диссертация должна быть экономической, т.е предметом защиты должно выступать новое экономическое знание, хотя и полученное, к примеру, с помощью математических моделей. Если по педагогическим – то диссертация должна быть педагогической, содержать новое педагогическое знание, хотя и полученное с использованием достижений психологии, экономики, юриспруденции и т.д. То есть «смешение жанров» в диссертациях недопустимо. 6. Свобода критики, беспрепятственное обсуждение вопросов науки, открытое и свободное выражение различных мнений. Поскольку диалектически противоречивый характер явлений и процессов в природе, в обществе и человеке раскрывается в науке не сразу и не прямо, в борющихся мнениях и воззрениях отражаются лишь отдельные противоречивые стороны изучаемых процессов. В результате та кой борьбы преодолевается первоначальная неизбежная односторонность различных взглядов на объект исследования и вырабатывается единое воззрение, на сегодняшний день наиболее адекватное отражение самой действительности. Из этой закономерности вытекает одно характерное объективное свойство ученых – одни достаточно спокойно, а подчас и скептически воспринимают любую новую научную работу, какой бы интересной и «красивой» она ни была. Разумный скептицизм – неотъемлемое положительное качество научного сообщества. Поэтому, уважаемый Читатель – докторант или соискатель ученой степени доктора наук – не удивляйтесь, что при оценке Вашей диссертации не будут «звенеть фанфары и бить литавры», не будет раздаваться хвалебных отзывов. Успешная защита Вашей диссертации означает лишь факт признания, что в здание Науки положен еще один кирпич. А насколько этот «кирпич» велик и прочен – в дальнейшем покажет время. 25. Методы эмпирического исследования. На эмпирическом уровне применяются такие методы, как наблюдение, описание, сравнение, измерение, эксперимент. Наблюдение – это систематическое и целенаправленное восприятие явлений, в ходе которого мы получаем знание о внешних сторонах, свойствах и отношениях изучаемых объектов. Наблюдение всегда носит не созерцательный, а активный, деятельный характер. Оно подчинено решению конкретной научной задачи и поэтому отличается целенаправленностью, избирательностью и систематичностью. Наблюдатель не просто регистрирует эмпирические данные, а проявляет исследовательскую инициативу: он ищет те факты, которые его действительно интересуют в связи с теоретическими установками, производит их отбор, дает им первичную интерпретацию. Одной из важнейших черт современного научного наблюдения являетсятехническая оснащенность. Назначение технических средств наблюдения состоит в том, чтобы не только повысить точность получаемых данных, но и обеспечить саму возможностьнаблюдать познаваемый объект, т.к. многие предметные области современной науки обязаны своим существованием прежде всего наличию соответствующей технической поддержки. Результаты научного наблюдения репрезентируются каким-либо специфически научным способом, т.е. в особом языке, использующем термины описания, сравненияили измерения.Иными словами, данные наблюдения сразу структурируются тем или иным образом (как результаты специального описанияили же значения шкалы сравнения,или же итоги измерения).При этом данные фиксируются в виде графиков, таблиц, схем и т.п., так проводится первичная систематизация материала, пригодная для дальнейшей теоретизации. Научное наблюдение всегда опосредуется теоретическим знанием, поскольку именно последнее определяет объект и предмет наблюдения, цель наблюдения и способ его реализации. В ходе наблюдения исследователь всегда руководствуется определенной идеей, концепцией или гипотезой. Интерпретация наблюдения также всегда осуществляется с помощью определенных теоретических положений. Основные требования к научному наблюдению: однозначность замысла, наличие строго определенных средств (в технических науках – приборов), объективность результатов. Объективность обеспечивается возможностью контроля путем либо повторного наблюдения, либо применения других методов исследования, в частности, эксперимента. Наблюдение как метод эмпирического исследования выполняет множество функций в научном познании. Прежде всего, наблюдение дает ученому прирост информации, необходимой для постановки проблем, выдвижения гипотез, проверки теорий. Наблюдение сочетается с другими методами исследования: оно может выступать начальным этапом исследований, предшествовать постановке эксперимента, который требуется для более детального анализа каких-либо аспектов изучаемого объекта; оно может, наоборот, осуществляться после экспериментального вмешательства, приобретая важный смысл динамического наблюдения, как, например, в медицине важная роль отводится послеоперационному наблюдению, следующему за проведенной экспериментальной операцией. Наконец, наблюдение входит в другие исследовательские ситуации как существенная составляющая: наблюдение осуществляется непосредственно в ходе эксперимента. Наблюдение как исследовательская ситуация включает: 1) субъекта, осуществляющего наблюдение, или наблюдателя; 2) наблюдаемый объект; 3) условия и обстоятельства наблюдения, к которым относят конкретные условия времени и места, технические средства наблюдения и теоретические знания, необходимые для создания данной исследовательской ситуации. Классификация наблюдений: 1) по воспринимаемому объекту — наблюдение прямое(при котором исследователь изучает свойства непосредственно наблюдаемого объекта) и косвенное(при котором воспринимают не сам объект, а эффекты, которые он вызывает в среде или другом объекте. Анализируя эти эффекты, мы получаем информацию об исходном объекте, хотя, строго говоря, сам объект остается ненаблюдаемым. Например, в физике микромира судят об элементарных частицах по следам, которые частицы оставляют во время своего движения, эти следы фиксируются и теоретически интерпретируются); 2) по исследовательским средствам — наблюдение непосредственное(инструментально не оснащенное, осуществляемое непосредственно органами чувств) и опосредованное,или инструментальное (проводимое с помощью технических средств, т.е. особых приборов, часто весьма сложных, требующих специальных знаний и вспомогательного материально-технического оснащения), этот вид наблюдения является сейчас основным в естественных науках; 3) по воздействию на объект — нейтральное(не влияющее на структуру и поведение объекта) и преобразующее(при котором происходит некоторое изменение изучаемого объекта и условий его функционирования; такой вид наблюдения зачастую является промежуточным между собственно наблюдением и экспериментом); 4) по отношению к общей совокупности изучаемых явлений — сплошное(когда изучаются все единицы исследуемой совокупности) и выборочное(когда обследуется только определенная часть, выборка из совокупности); это деление имеет важное значение в статистике; 5) по временным параметрам — непрерывноеи прерывное;при непрерывномисследование ведется без перерывов в течение достаточно длительного промежутка времени, оно применяется в основном для изучения труднопрогнозируемых процессов, например в социальной психологии, этнографии; прерывноеимеет различные подвиды: периодическое и непериодическое. Описание – фиксация средствами естественного или искусственного языка результатов опыта (данных наблюдения или эксперимента). Как правило, описание опирается на повествователъные схемы, использующие естественный язык. В то же время описание возможно с помощью определенных систем обозначения, принятых в науке (схемы, графики, рисунки, таблицы, диаграммы и т.д.). В прошлом описательные процедуры играли в науке очень важную роль. Многие дисциплины имели раньше сугубо описательный характер. Например, в новоевропейской науке вплоть до XVIII в. ученые-естественники составляли объемистые описания всевозможных свойств растений, минералов, веществ и т.п., (причем с современной точки зрения часто несколько бессистемно), выстраивая длинные ряды качеств, сходств и отличий предметов между собой. Сегодня описательная наука в целом потеснена в своих позициях направлениями, ориентированными на математические методы. Однако и сейчас описание как средство репрезентации эмпирических данных не потеряло своего значения. В биологических науках, где именно непосредственное наблюдение и описательное представление материала явились их началом, и сегодня продолжают существенно использовать описательные процедуры в таких дисциплинах, как ботаникаи зоология.Важнейшую роль играет описание и в гуманитарныхнауках: истории, этнографии, социологии и др.; а также в географическихи геологическихнауках. Разумеется, описание в современной науке приняло несколько другой характер по сравнению с его прежними формами. В современных дескриптивных процедурах большое значение имеют стандарты точности и однозначности описаний. Ведь подлинно научное описание опытных данных должно иметь одно и то же значение для любых ученых, т.е. должно быть универсальным, постоянным по своему содержанию. Это означает, что необходимо стремиться к таким понятиям, смысл которых уточнен и закреплен тем или иным признанным способом. Конечно, описательные процедуры изначально допускают некоторую вероятность неоднозначности и неточности изложения. Например, в зависимости от индивидуального стиля того или иного ученого-геолога описания одних и тех же геологических объектов оказываются порой значительно отличающимися друг от друга. То же происходит и в медицине при первичном обследовании пациента. Однако в целом эти расхождения в реальной научной практике корректируются, приобретая большую степень достоверности. Для этого используются специальные процедуры: сравнение данных из независимых источников информации, стандартизация описаний, уточнение критериев для использования той или иной оценки, контроль со стороны более объективных, инструментальных методов исследования, согласование терминологии и др. Сравнение – метод, выявляющий сходство или различие объектов (либо ступеней развития одного и того же объекта), т.е. их тождество и различия. При сравнении эмпирические данные репрезентируются, соответственно, в терминах сравнения.Это означает, что признак, обозначаемый сравнительным термином, может иметь различные степени выраженности, т.е. приписываться какому-то объекту в большей или меньшей степени по сравнению с другим объектом из той же изучаемой совокупности. Например, один предмет может быть теплее, темнее другого; один цвет может казаться испытуемому в психологическом тесте более приятным, чем другой и т.п. Характерно то, что операция сравнения выполнима и тогда, когда у нас нет четкого определения какого-либо термина, нет точных эталонов для сравнительных процедур. Скажем, мы можем не знать, как выглядит «совершенный» красный цвет, и не уметь его охарактеризовать, но при этом вполне можем сравнивать цвета по степени «удаленности» от предполагаемого эталона, говоря, что один из семейства похожих на красный цвет явно светлее красного, другой — темнее, третий — еще темнее, чем второй и т.п. Сравнение играет важную роль при попытке прийти к единому мнению в вопросах, вызывающих трудности. Скажем, при оценке некоторой теории вопрос о ее однозначной характеристике как истинной может вызывать серьезные затруднения, в то время как гораздо легче прийти к единству в сравнительных частных вопросах о том, что эта теория лучше согласуется с данными, чем теория-конкурент, или же что она проще другой, интуитивно правдоподобнее и т.п. Эти удачные качества сравнительных суждений и способствовали тому, что сравнительные процедуры и сравнительные понятия заняли важное место в научной методологии. Значение терминов сравнения заключается еще и в том, что с их помощью удается добиться весьма заметного повышения точности в понятиях там, где методы прямого введения единиц измерения, т.е. перевода на язык математики, не срабатывают в силу специфики данной научной области. Это касается, прежде всего, гуманитарных наук. В таких областях благодаря использованию терминов сравнения удается построить определенные шкалыс упорядоченной структурой, подобной числовому ряду. И именно потому, что сформулировать суждение отношения оказывается легче, чем дать качественное описание в абсолютной степени, термины сравнения позволяют упорядочить предметную область без введения четкой единицы измерения. Типичным примером такого подхода является шкала Мооса в минералогии. Она используется для определения сравнительной твердости минералов. Согласно этой методике, предложенной в 1811 г. Ф. Моосом, один минерал считается тверже другого, если оставляет на нем царапину; на этой базе вводится условная 10-балльная шкала твердости, в которой твердость талька принимается за 1, твердость алмаза — за 10. Для выполнения операции сравнения требуются определенные условия и логические правила. Прежде всего должна существовать известная качественная однородность сравниваемых объектов; эти объекты должны принадлежать к одному и тому же естественно сформированному классу), как, например, в биологии мы сравниваем строение организмов, относящихся к одной таксономической единице. Далее, сравниваемый материал должен подчиняться определенной логической структуре, которая в достаточной мере может быть описана т.н. отношениями порядка. В том случае, когда операция сравнения выходит на первое место, становясь как бы смысловым ядром всего научного поиска, т.е. выступает ведущей процедурой в организации эмпирического материала, говорят осравнительном методев той или иной области исследований. Ярким примером этого служат биологические науки. Сравнительный метод сыграл важнейшую роль в становлении таких дисциплин, как сравнительная анатомия, сравнительная физиология, эмбриология, эволюционная биология и др. С помощью процедур сравнения осуществляют качественное и количественное изучение формы и функции, генезиса и эволюции организмов. С помощью сравнительного метода упорядочивается знание о многообразных биологических феноменах, создается возможность выдвижения гипотез и создания обобщающих концепций. Так, на основе общности морфологического строения тех или иных организмов естественным образом выдвигают гипотезу об общности и их происхождения или жизнедеятельности и т.п. Измерение – метод исследования, при котором устанавливается отношение одной величины к другой, служащей эталоном, стандартом. Измерение — это осуществляемый по определенным правилам способ приписывания количественных характеристикизучаемым объектам, их свойствам или отношениям. В структуру измерения входят: 1) объект измерения, рассматриваемый как величина,подлежащая измерению; 2) метод измерения, включающий метрическую шкалу с фиксированной единицей измерения, правила измерения, измерительные приборы; 3) субъект, или наблюдатель, который осуществляет измерение; 4) результат измерения, который подлежит дальнейшей интерпретации. В научной практике измерение далеко не всегда представляет собой относительно простую процедуру; значительно чаще для его проведения требуются сложные, специально подготовленные условия. В современной физике сам процесс измерения обслуживается достаточно серьезными теоретическими конструкциями; они содержат, например, совокупность допущений и теорий об устройстве и действии самой измерительно-экспериментальной установки, о взаимодействии измерительного прибора и изучаемого объекта, о физическом смысле тех или иных величин, полученных в результате измерения. Для иллюстрации круга проблем, относящихся к теоретическому обеспечению измерения, можно указать на различие измерительных процедур для величин экстенсивныхи интенсивных.Экстенсивные величины измеряются с помощью простых операций, фиксирующих свойства единичных объектов. К таким величинам относятся, например, длина, масса, время. Совершенно другой подход требуется для измерения интенсивных величин. К таким величинам относятся, например, температура, давление газа. Они характеризуют не свойства единичных объектов, а массовые, статистически фиксируемые параметры коллективных объектов. Для измерения подобных величин требуются особые правила, с помощью которых можно упорядочить область значений интенсивной величины, построить шкалу, выделить на ней фиксированные значения, задать единицу измерения. Так, созданию термометра предшествует совокупность специальных действий по созданию шкалы, пригодной для измерения количественного значения температуры. Измерения принято делить на прямыеи косвенные.При проведении прямого измерения результат достигается непосредственно, из самого процесса измерения. При косвенном же измерении получают значение каких-то других величин, а искомый результат достигается с помощью вычисленияна основании определенной математической зависимости между данными величинами. Многие явления, недоступные прямому измерению, такие как объекты микромира, удаленные космические тела, могут быть измерены только косвенным способом. Эксперимент – метод исследования, при помощи которого происходит активное и целенаправленное восприятие определенного объекта в контролируемых и управляемых условиях. Основные особенности эксперимента: 1) активное отношение к объекту вплоть до его изменения и преобразования; 2) многократная воспроизводимость изучаемого объекта по желанию исследователя; 3) возможность обнаружения таких свойств явлений, которые не наблюдаются в естественных условиях; 4) возможность рассмотрения явления «в чистом виде» путем изоляции его от внешний влияний, или путем изменения условий эксперимента; 5) возможность контроля за «поведением» объекта и проверки результатов. Можно сказать, что эксперимент – идеализированный опыт. Он дает возможность следить за ходом изменения явления, активно воздействовать на него, воссоздавать, если в этом есть необходимость, прежде чем сравнивать полученные результаты. Поэтому эксперимент является методом более сильным и действенным, чем наблюдение или измерение, где исследуемое явление остается неизменным. Это высшая форма эмпирического исследования. Эксперимент применяется либо для создания ситуации, позволяющей исследовать объект в чистом виде, либо для проверки уже существующих гипотез и теорий, либо для формулировки новых гипотез и теоретических представлений. Всякий эксперимент всегда направляется какой-либо теоретической идей, концепцией, гипотезой. Данные эксперимента, также как и наблюдения, всегда теоретически нагружены – от его постановки до интерпретации результатов. Стадии проведения эксперимента: 1) планирование и построение (его цель, тип, средства и т.п.); 2) контроль; 3) интерпретация результатов. Структура эксперимента: 1) объект исследования; 2) создание необходимых условий (материальные факторы воздействия на объект исследования, устранение нежелательных воздействий – помех); 3) методика проведения эксперимента; 4) гипотеза или теория, которую нужно проверить. Как правило, экспериментирование связано с использованием более простых практических методов – наблюдений, сравнений и измерений. Поскольку эксперимент не проводится, как правило, без наблюдений и измерений, то он должен отвечать их методическим требованиям. В частности, как и при наблюдениях и измерениях, эксперимент может считаться доказательным, если он поддается воспроизведению любым другим человеком в другом месте пространства и в другое время и дает тот же результат. Виды эксперимента: В зависимости от задач эксперимента выделяют исследовательские (задача – формирование новых научных теорий), проверочные эксперименты (проверка существующих гипотез и теорий), решающие (подтверждение одной и опровержение другой из соперничающих теорий). В зависимости от характера объектов выделяют физические, химические, биологические, социальные и др. эксперименты. Выделяют также качественные эксперименты, имеющие целью установить наличие или отсутствие предполагаемого явления, и измерительные эксперименты, выявляющие количественную определенность некоторого свойства. |