теория 2. 1. Геополитическое положение Российской Федерации
Скачать 2.01 Mb.
|
57. Диагностика степени тяжести острой лучевой болезни в период первичной реакции. Показатель Степень тяжести болезни I II III IV Ориентиро вочная доза; Гр 1-2 2-4 4-6 6 Рвота Через 2 ч и более; однократная Через 1-2 ч; повторная Через 0,5-1 ч; многократная Через 5-20 с; неукротимая Диарея Нет Нет Чаще нет Может быть Головная боль Кратковременна я Небольшая Выраженная Сильная; сознание спутанное 131 58. Механизмы формирования основных синдромов острой лучевой болезни. Следствием радиационного поражения органов кроветворения является формирование гематологического (панцитопенического) синдрома, характеризующегося уменьшением числа клеток в периферической крови вследствие нарушения их продукции. Он занимает важное место в течении заболевания, а при костномозговой форме лучевой болезни определяет ее исход. Изменения в кроветворных органах наступают непосредственно после воздействия радиации и находятся в прямой зависимости от дозы облучения. Уже при небольших дозах облучения происходит торможение гемопоэза, вследствие чего изменяется клеточный состав периферической крови. При больших дозах облучения (6-10 Гр) наступает ранняя тотальная аплазия органов кроветворения, выявляются характерные биохимические и гистохимические изменения, достигающие максимальной выраженности на 2—3-й день заболевания: уменьшается количество ДНК и РНК в клетках, угнетаются окислительное фосфорилирование и тканевое дыхание, повышается активность аденозинтрифосфатазы. Главную роль в развитии гематологического синдрома играет поражение стволовой клетки, являющейся полипотентной, т. е. способной к клеточным дифференцировкам по всем направлениям кроветворения, а также поддержанию необходимого количества клеток своей собственной популяции. Точка зрения о способности стволовой клетки к самоподдержанию разделяется не всеми, однако общепризнанным фактом считается, что заложенное в эмбриогенезе количество стволовых клеток достаточно для сохранения кроветворения, даже если эти клетки не поддерживаются. Стволовые клетки сосредоточены главным образом в органах кроветворения и лишь небольшое их количество циркулирует в периферической крови. Они высоко радиочувствительны и в то же время обладают большой регенераторной способностью, поэтому при сохранении после облучения определенного количества жизнеспособных стволовых клеток возможно восстановление гемопоэза. Воздействие радиации сопровождается повреждением не только пула стволовых клеток, но также и размножающихся дифференцированных элементов (миелобласты, промиелоциты, миелоциты) созревающих клеток. Изменения в пуле размножающихся элементов в основном обусловлены интерфазной гибелью клеток. Клетки, циркулирующие в периферической крови, относительно резистентны к действию ионизирующих излучений, за исключением лимфоцитов, содержание которых в крови снижается очень рано. Поэтому цитопения в крови вызвана прежде всего уменьшением поступления зрелых клеток из пораженной кроветворной ткани и в меньшей степени определяется действием излучения на сами эти клетки. Наряду с поражением стволовых и созревающих клеток определенную роль в формировании гематологического синдрома играет токсемический фактор. Установлено, что образующиеся после облучения токсические вещества сорбируются ядрами клеток кроветворной ткани, блокируют синтез ДНК, что приводит к угнетению клеточного деления. Радиочувствительность клеток, находящихся в разных фазах клеточного цикла, неодинакова. У стволовых клеток костного мозга, находящихся в состоянии покоя, она в несколько раз ниже, чем у постоянно циркулирующих. Число созревающих клеток после облучения быстро снижается из- Температур а тела Норма Субфебрильная Субфебриль ная 38˚ С Состояние кожи и видимых слизистых оболочек То же Слабая преходящая гиперемия Умеренная гиперемия Выраженная гиперемия Продолжит ельность первичной реакции Несколько часов 1 сут. 2 сут. 2 сут. 132 за интерфазной и репродуктивной гибели, а также в результате задержки их деления. При облучении в супралетальных дозах (свыше 10 Гр) быстро прекращается клеточное деление и синтез ДНК, в последующем происходит деструкция основной массы костного мозга и уже через несколько часов после радиационного воздействия в клетках определяют пик- ноз ядер, кариорексис, кариолиз, цитолиз, вакуолизацию цитоплазмы. Одновременно начинается интенсивный фагоцитоз поврежденных клеток и уже через 48 ч все они практически удаляются. При меньших дозах облучения отмечаются последовательные изменения клеток различных участков костного мозга и разной зрелости. Уже в первые сутки уменьшается число эритробластов, миелобластов и промиелоцитов, а на 4—5-е сутки наступает опустошение костного мозга за счет значительного уменьшения общего количества эритробластов и гранулоцитов. Существует зависимость между дозой облучения и степенью уменьшения процентного содержания пролиферирующих эритробластов (базофильных и полихроматофильных), а также величиной митотического индекса клеток костного мозга на 4-е сутки после облучения. Содержание мегакариоцитов начинает снижаться сразу после облучения и максимально уменьшается к 5—7-му дню болезни, причем ранее всего повреждаются молодые формы (мегакариобласты, ба- зофильные мегакариоциты). К концу первых суток после облучения выявляют изменения в хромосомном аппарате клеток костного мозга и периферической крови: появляются митозы со структурными нарушениями хромосом — хромосомные аберрации, число которых пропорционально дозе облучения (при дозе 1 Гр обнаруживается до 20% аберрантных клеток, при дозе 5 Гр • 100%). В костном мозге клетки с хромосомными аберрациями перестают обнаруживаться через 5—6 сут после облучения, в культуре лимфоцитов периферической крови хромосомные повреждения определяются на протяжении многих лет после облучения. 59. Биологическая дозиметрия в диагностике острой лучевой болезни. Диагностика лучевой болезни основывается главным образом на физической и биологической дозиметрии. При физической дозиметрии используются индивидуальные и коллективные (групповые) дозиметры. При индивидуальной дозиметрии снимаются показания дозиметра, имевшегося У облученного в момент облучения. При групповом способе поглощенная доза определяется одним дозиметром, выданным группе людей. Биологическая дозиметрия может осуществляться в основном двумя способами. 1.Клинической оценкой выраженности, сроком наступления и длительностью общей первичной реакции (ведущим признаком является рвота.) При легкой степени тяжести проявления общей первичной реакции наступают через 2 часа и больше после облучения, рвота однократная и может вообще отсутствовать, период общей первичной реакции продолжается до 1 суток. При средней степени тяжести тошнота и рвота появляются в интервале от 1 до 2 часов после облучения, рвота повторная, длительность периода - до 2 суток. При тяжелой степени проявления периода общей первичной реакции наступают в интервале от получаса до 1 часа после облучения, рвота многократная, продолжительность периода - до 3 суток. При крайне тяжелой степени тяжести тошнота и рвота появляются в интервале от 15 до 30 минут после облучения, рвота неукротимая, длительность периода -до 4 суток. Помимо этого учитывают длительность скрытого периода: при 1 степени тяжести - до 4 недель, при 2 степени - до 3 недель, при 3 степени - до 2 недель, при 4 степени - до 1 недели и может практически отсутствовать. 2.Гематологическим контролем: • глубина лимфопении через 48-72 часа; • выраженность лейкопении на 7-8-9 сутки; • срок возникновения агранулоцитоза. Существуют и более сложные способы диагностики дозы облучения, которые, в частности, использовались у пострадавших в Чернобыле - по количеству хромосомных аберраций в культуре лимфоцитов или по количеству аберраций в препаратах костного мозга. Однако при массовом поступлении пораженных использование таких методов диагностики практически невозможно. 133 60. Особенности радиационных поражений при воздействии нейтронов. Особенности патогенеза ОЛБ, возникающей при воздействии нейтронов, обусловлены следующими причинами: 1) меньшая (по сравнению с рентгеновским и гамма-излучением), проникающая способность нейтронов, что обусловливает меньшую равномерность распределения дозы по телу; 2) неспособность клеток к репарации нейтронных поражений. В результате сочетания этих факторов при нейтронных воздействиях сильнее поражается кишечный эпителий, радиорезистентность которого, в отличие от кроветворной ткани, в значительной мере связана с большей способностью к репарации сублетальных повреждений клеток. Кроветворная же система поражается меньше, чем при соответствующей поглощённой дозе электромагнитного ИИ: это связано с ускорением процесса восстановления кроветворной ткани за счёт миграции клеток из менее облучённых её участков. Клинические особенности ОЛБ при поражении нейтронами: - наличие кишечного синдрома даже при несмертельных дозах нейтронного облучения организма. При ОЛБ от гамма-облучения наличие кишечного синдрома не всегда является неблагоприятным прогностическим признаком; его лечение может привести в дальнейшем к выздоровлению. Наиболее характерными клиническими признаками при этом являются: - бурное течение первичной реакции на облучение с явными признаками РПН-синдрома. - более выраженная глубина лимфопении в период первичной реакции на облучение. - раннее начало и большая выраженность геморрагического синдрома как следствие прямого повреждения нейтронами стенки сосудов 61. Табельные радиопротекторы, характеристика и порядок применения. К радиопротекторам относятся вещества (препараты или рецептуры), которые при профилактическом применении способны оказывать защитное действие, проявляющееся в сохранении жизни облученного организма или ослаблении степени тяжести лучевого поражения с пролонгацией состояния дееспособности и сроков жизни. В отличие от других радиозащитных средств, противолучевой эффект для радиопротекторов среди прочих фармакологических свойств является основным. Он развивается в первые минуты или часы после введения, сохраняется на протяжении относительно небольших сроков (до 2-6 ч) и проявляется, как правило, в условиях импульсного и других видов острого облучения. Действие радиопротекторов направлено, прежде всего, на защиту костного мозга и других гемопоэтических тканей, поэтому препараты этой группы целесообразно применять для профилактики поражений, вызываемых облучением в «костномозговом» диапазоне доз (1-10 Гр). Радиозащитная активность радиопротекторов оценивается обычно в единицах так называемого «фактора изменения дозы» (ФИД), представляющего собой отношение доз, вызывающих равнозначный биологический эффект при использовании препарата и в облученном контроле. Если в качестве критерия биологического эффекта используется 50 % летальность, то ФИД представляет собой отношение дозы излучения, вызывающей гибель половины получивших препарат особей, к дозе того же излучения, смертельной для половины особей незащищенной группы: ФИД = СД50 с препаратом (опыт) / СД50 без препарата (контроль) Наиболее быстродействующими радиопротекторами являются препараты, обладающие сосудосуживающими свойствами. Индралин – производное имидазола, агонист a-адренореактивных структур организма. Индралин является радиопротектором экстренного действия. Препарат предназначен для применения в экстремальных ситуациях, сопровождающихся угрозой облучения в дозах более 1 Гр, для снижения тяжести острого лучевого поражения организма. Применялся участниками ликвидации аварии на Чернобыльской АЭС. Индралин принят на снабжение медико-санитарных частей Минздрава РФ. Препарат назначается внутрь в дозе 0,45 г (3 таблетки по 0,15 г) за 10-15 мин до предполагаемого облучения. Продолжительность действия радиопротектора – около 1 ч. Противолучевой эффект индралина наиболее выражен в условиях импульсного воздействия ИИ (например, гамма-лучей и нейтронов ядерного взрыва). Нафтизин (группа имидазолинов) выпускается в виде 0,1 % раствора для внутримышечных инъекций. Вводится в объёме 1 мл за 3-5 мин до предполагаемого облучения. 134 Мексамин (5-метокситриптамин). Радиозащитный эффект препарата развивается в течение нескольких минут, но его продолжительность невелика (40-50 мин). Мексамин принимают внутрь в дозе 50-100 мг (1-2 табл.) за 30-40 мин до предполагаемого облучения. Самую многочисленную группу радиопротекторов составляют серосодержащие соединения. Как правило, эти препараты предназначены для приёма внутрь. Противолучевой эффект развивается через 30-40 мин, его продолжительность достигает 6 часов. Цистамина дигидрохлорид. Препарат принимают в количестве 1,2 г (6 табл. по 0,2 г), запивая водой, но не разжёвывая, за 30-60 мин до воздействия ИИ. В течение первых суток при новой угрозе облучения возможен повторный приём препарата в дозе 1,2 г через 4-6 часов после первого применения. Цистамин эффективен при угрозе кратковременного облучения в дозах, вызывающих костномозговую форму острой лучевой болезни. Гаммафос представляет собою γ-аминопропиламиноэтилтиофосфорную кислоту. Применяется при лучевой и химиотерапии онкологических больных для избирательного снижения поражения тканей, не вовлечённых в опухолевый рост. Препарат вводят один раз в сутки внутривенно, медленно (в течение 15 мин), в дозе 340 мг/м2 поверхности тела, за 15 мин. до каждого облучения. Следует отметить, что, несмотря на более выраженные, чем у цистамина, противолучевые свойства, применению гаммафоса в качестве индивидуального медицинского средства защиты препятствует необходимость внутривенного введения: в полевых условиях предпочтение отдаётся препаратам, вводимым перорально, либо внутримышечно. Применение радиопротекторов при кратковременном облучении в дозах менее 1 Гр нецелесообразно. Малоэффективны они и при дозах облучения, соответствующих кишечной, токсемической и церебральной формам острой лучевой болезни. 62. Средства длительного поддержания повышенной радиорезистентности организма (диэтилстильбестрол и др.). Средства профилактики ранней преходящей недееспособности. Проблему защиты личного состава при пролонгированном облучении с низкой мощностью дозы невозможно решить с помощью радиопротекторов. В подобных условиях критерий радиозащитного действия - не столько снижение смертности от острой лучевой болезни (которая часто и не развивается), сколько профилактика отдаленных последствий облучения (рака, лейкоза, катаракты, ее сокращения продолжительности жизни). Радиопротекторы мало влияют на эти эффекты, поэтому их применение при пролонгированном облучении с низкой мощностью дозы нецелесообразно. Для зашиты личного состава, участвующего в ликвидации последствий ядерных взрывов или радиационных аварий, рекомендованы препараты из другой группы противолучевых средств - средства длительного поддержания повышенной радиорезистентности организма. Их существенным отличием от радиопротекторов является то, что радиозащитный эффект часто не является для препаратов этой группы основным, и большинство из них обладают противолучевой активностью в условиях как профилактического, так и лечебного применения. Эти препараты, как правило, не вызывают грубых изменений тканевого метаболизма и в силу этого могут применяться многократно, непрерывно и длительно. Средства длительного повышения радиорезистентности организма целесообразно разделить на две основные группы: 1. Средства защиты от «поражающих» доз облучения, куда относятся препараты, обладающие достаточно выраженным противолучевым действием, т. е. способные предупреждать или ослаблять ближайшие последствия внешнего облучения в дозах, вызывающих ОЛБ. Если эти средства используются до облучения, т. е. профилактически, то в литературе их часто обозначают как«радиопротекторы длительного (или пролонгированного) действия». 2. Средства защиты от «субклинических» доз облучения.В эту группу входят препараты, имеющие относительно низкую противолучевую активность, но способные снижать выраженность неблагоприятых (в томчисле и отдаленных) последствий облучения в дозах, не вызывающих развития клинических проявлений лучевой патологии. Механизм противолучевого действия средств защиты от «поражающих» доз облучения принципиально отличен от реализации эффекта радиопротекторов кратковременного действия, т. е. непосредственно не связан с первичными радиационно-химическими и биохимическими 135 процессами в клетках. В настоящее время считается, что решающую роль в противолучевом действии этих средств играет их способность вызывать мобилизацию защитных систем организма и активизировать процессы пострадиационной репопуляции костного мозга и восстановления всей системы крови. Наряду с этим, в основе радиозащитного эффекта ряда средств защиты от «поражающих» доз облучения лежит их способность изменять гормональный фон организма. Так, спустя 1-2 сут после введения эстрогенов или их синтетических нестероидных аналогов развивается состояние гиперэстрогенизма, которое определяет длительное (до 2-3 нед) повышение обшей неспецифической устойчивости организма к действию экстремальных факторов, в том числе ионизирующих излучений. Наиболее эффективными средствами из этой группы являются гормональные препараты стероидной структуры и их аналоги и иммуномодуляторы. Из гормональных препаратов, обладающих противолучевыми свойствами, наиболее изучендиэтилстильбестрол(ДЭС). Повышение радиорезистентности организма (ФУД в пределах 1,15-1,2) происходит обычно спустя 2 сут после его введения и сохраняется в течение 1-2 нед. В механизмах радиозащитного действия ДЭС ведущую роль играет обратимое торможение пролиферативной активности клеток костного мозга, повышение уровня гранулоцитарно- макрофагального колониестимулирующего фактора и, как следствие, активация миелоидного и мегакариоцитарного ростков костного мозга. Под влиянием эстрогенов происходит стимуляция системы мононуклеарных фагоцитов, что приводит к повышению резистентности облученного организма к токсемии и бактериемии. ДЭС в качестве радиопротектора пролонгированного действия назначается однократно внутрь в дозе 25 мг (1 табл.) за 2 сут до предполагаемого воздействия ионизирующего излучения. При приеме больших доз ДЭС увеличивается вероятность развития токсических поражений печени и почек, а также возможно появление признаков феминизации, связанных с эстрогенной активностью препарата. Для исключения нежелательных побочных эффектов ДЭС среди ин-дольных аналогов синтетических нестероидных антиэстрогенов разработан и проходит клинические испытания новый радиопротектор длительного действия, получивший название |