Главная страница
Навигация по странице:

  • 45. Характеристика форменных элементов крови (эритроциты, лейкоциты, тромбоциты) и их роль в организме. Эритроциты

  • 46. Виды гемоглобина и его соединения, их физиологическое значение.

  • 48. Понятие о гемостазе. Принципы остановки кровотечения. Показатели гемостаза. Сосудисто-тромбоцитарный гемостаз. 49.Коагуляционный гемостаз. Факторы и фазы свертывания.

  • Факторы, ускоряющие и замедляющие свертывание крови.

  • Ответы к экз по физиологии. ОТВЕТЫ ФИЗО. 1. Предмет и задачи физиологии. Роль физиологии в диалектикоматериалистическом понимании сущности жизни. Области физиологии. Связь физиологии с другими науками


    Скачать 426.46 Kb.
    Название1. Предмет и задачи физиологии. Роль физиологии в диалектикоматериалистическом понимании сущности жизни. Области физиологии. Связь физиологии с другими науками
    АнкорОтветы к экз по физиологии
    Дата20.06.2020
    Размер426.46 Kb.
    Формат файлаdocx
    Имя файлаОТВЕТЫ ФИЗО.docx
    ТипДокументы
    #131660
    страница12 из 32
    1   ...   8   9   10   11   12   13   14   15   ...   32

    Онкотическое давление является частью осмотического и зависит от содержания крупномолекулярных соединений (белков) в растворе.Хотя концентрация белков в плазме довольно велика, общее количество молекул из-за их большой молекулярной массы относительно мало, благодаря чему онкотическое давление не превышает 30 мм рт.ст. Онкотическое давление в большей степени зависит от альбуминов (80% онкотического давления создают альбумины), что связано с их относительно малой молекулярной массой и большим количеством молекул в плазме.

    Онкотическое давление играет важную роль в регуляции водного обмена. Чем больше его величина, тем больше воды удерживается в сосудистом русле и тем меньше ее переходит в ткани и наоборот. Онкотическое давление влияет на образование тканевой жидкости, лимфы, мочи и всасывание воды в кишечнике.

    При снижении концентрации белка в плазме развиваются отеки, так как вода перестает удерживаться в сосудистом русле и переходит в ткани.


    45. Характеристика форменных элементов крови (эритроциты, лейкоциты, тромбоциты) и их роль в организме.

    Эритроциты – красные кровяные тельца, содержащие дыхательный пигмент – гемоглобин. Эти безъядерные клетки образуются в красном костном мозге, а разрушаются в селезенке. В зависимости от размеров делятся на нормоциты, микроциты и макроциты. Примерно 85 % всех клеток имеет форму двояковогнутого диска или линзы с диаметром 7,2–7,5 мкм. Такая структура обусловлена наличием в цитоскелете белка спектрина и оптимальным соотношением холестерина и лецитина. Благодаря данной форме эритроцит способен переносить дыхательные газы – кислород и углекислый газ.

    Функции эритроцитов:

    1. дыхательная (связана с наличием гемоглобина и бикарбоната калия, за счет которых осуществляется перенос дыхательных газов);

    2. питательная (связана со способностью мембраны клеток адсорбировать аминокислоты и липиды, которые с током крови транспортируются от кишечника к тканям);

    3. ферментативная (обусловлена присутствием на мембране карбоангидразы, метгемоглобинредуктазы, глютатионредуктазы, пероксидазы, истинной холинэстеразы);

    4. защитная (осуществляется в результате оседания токсинов микробов и антител, а также за счет присутствия факторов свертывания крови и фибринолиза);

    5. буферная.

    Поскольку эритроциты содержат антигены, то их используют в иммунологических реакциях для выявления антител в крови.

    Эритроциты являются самыми многочисленными форменными элементами крови. Так, у мужчин в норме содержится 4,5–5,5 × 1012/л, а у женщин – 3,7–4,7 × 1012/л. Однако количество форменных элементов крови изменчиво (их увеличение называется эритроцитозом, а при уменьшение – эритропенией).

    Эритроциты обладают физиологическими и физико-химическими свойствами:

    1. Пластичностью. Пластичность во многом обусловлена строением цитоскелета, в котором очень важным является соотношение фосфолипидов и холестерина. Это соотношение выражается в виде липолитического коэффициента и в норме составляет 0,9. Пластичность эритроцитов – способность к обратимой деформации при прохождении через узкие капилляры и микропоры. При снижении количества холестерина в мембране наблюдается снижение стойкости эритроцитов.

    2. Осмотической стойкостью (эритроциты способны противостоять разрушительному осмотическому воздействию).

    3. Наличием креаторных связей, благодаря которым эритроциты являются идеальным переносчиками, транспортируют различные вещества и осуществляют межклеточное взаимодействие.

    4. Способностью к оседанию. Способность к оседанию обусловлена удельным весом клеток, который выше, чем все плазмы крови. В норме она невысока и связана с наличием белков альбуминовой фракции, которые способны удерживать гидратную оболочку эритроцитов. Глобулины являются лиофобными коллоидами, которые препятствуют образованию гидратной оболочки. Соотношение альбуминовой и глобулиновой фракций крови (белковый коэффициент) определяет скорость оседания эритроцитов. В норме он составляет 1,5–1,7.

    5. Агрегацией. Агрегация наблюдается при уменьшении скорости кровотока и увеличении вязкости. При быстрой агрегации образуются «монетные столбики» – ложные агрегаты, которые распадаются на полноценные клетки с сохраненной мембраной и внутриклеточной структурой. При длительном нарушении кровотока появляются истинные агреганты, вызывающие образование микротромба.

    6. Деструкцией. Деструкция (разрушение эритроцитов) происходит через 120 дней в результате физиологического старения. Оно характеризуется:

    • постепенным уменьшением содержания липидов и воды в мембране;

    • увеличенным выходом ионов K и Na;

    • преобладанием метаболических сдвигов;

    • ухудшением способности к восстановлению метгемоглобина в гемоглобин;

    • понижением осмотической стойкости, приводящей к гемолизу.

    Стареющие эритроциты за счет понижения способности к деформации застревают в миллипоровых фильтрах селезенки, где поглощаются фагоцитами. Около 10 % клеток подвергаются разрушению в сосудистом русле.

    Лейкоциты – ядросодержащие клетки крови, размеры которых от 4 до 20 мкм. Продолжительность их жизни сильно варьируется и составляет от 4–5 до 20 дней для гранулоцитов и до 100 дней для лимфоцитов. Количество лейкоцитов в норме у мужчин и женщин одинаково и составляет 4–9 × 109/л. Однако уровень клеток в крови непостоянен и подвержен суточными и сезонным колебаниям в соответствии с изменением интенсивности обменных процессов.

    Лейкоциты делятся на две группы: гранулоциты (зернистые) и агранулоциты.

    Среди гранулоцитов в периферической крови встречаются:

    • нейтрофилы – 46–76 %;

    • эозинофилы – 1–5 %;

    • базофилы – 0–1 %.

    В группе незернистых клеток выделяют:

    • моноциты – 2—10 %;

    • лимфоциты – 18–40 %.

    Процентное содержание лейкоцитов в периферической крови называется лейкоцитарной формулой, сдвиги которой в разные стороны свидетельствуют о патологических процессах, протекающих в организме. Различают сдвиг вправо – понижение функции красного костного мозга, сопровождающееся увеличением количества старых форм нейтрофильных лейкоцитов. Сдвиг влево является следствием усиления функций красного костного мозга, в крови увеличивается количество молодых форм лейкоцитов. В норме соотношение между молодыми и старыми формами лейкоцитов составляет 0,065 и называется индексом регенерации. За счет наличия ряда физиологических особенностей лейкоциты способны выполнять множество функций. Важнейшими из свойств являются амебовидная подвижность, миграция (способность проникать через стенку неповрежденных сосудов), фагоцитоз.

    Лейкоциты выполняют в организме защитную, деструктивную, регенеративную, ферментативную функции.

    Защитное свойство связано с бактерицидным и антитоксическим действием агранулоцитов, участием в процессах свертывания крови и фибринолиза.

    Деструктивное действие заключается в фагоцитозе отмирающих клеток.

    Регенеративная активность способствует заживлению ран.

    Ферментативная роль связана с наличием ряда ферментов.

    Иммунитет – способность организма защищаться от генетически чужеродных веществ и тел. В зависимости от происхождения может быть наследственным и приобретенным. Он основан на выработке антител на действие антигенов. Выделяют клеточное и гуморальное звенья иммунитета. Клеточный иммунитет обеспечивается активностью Т-лимфоцитов, а гуморальный – В-лимфоцитов.

    Тромбоциты – безъядерные клетки крови, диаметром 1,5–3,5 мкм. Они имеют уплощенную форму, и их количество у мужчин и женщин одинаково и составляет 180–320 × 109/л. Эти клетки образуются в красном костном мозге путем отшнуровывания от мегакариоцитов.

    Тромбоцит содержит две зоны: гранулу (центр, в котором находятся гликоген, факторы свертывания крови и т. д.) и гиаломер (периферическую часть, состоящую из эндоплазматического ретикулума и ионов Ca).

    Мембрана построена из бислоя и богата рецепторами. Рецепторы по функции делятся на специфические и интегрированные. Специфические способны взаимодействовать с различными веществами, за счет чего запускаются механизмы, аналогичные действию гормонов. Интегрированные обеспечивают взаимодействие между тромбоцитами и эндотелиоцитами.
    Для тромбоцитов характерны следующие свойства:

    1. амебовидная подвижность;

    2. быстрая разрушаемость;

    3. способность к фагоцитозу;

    4. способность к адгезии;

    5. способность к агрегации.

    Функции тробоцитов:

    1. Трофическая функция заключается в обеспечении сосудистой стенки питательными веществами, за счет которых сосуды становятся более упругими.

    2. Регуляция сосудистого тонуса достигается благодаря наличию биологического вещества – серотонина, вызывающего сокращения гладкомышечных клеток. Трамбоксан А2 (производный арахидоновой кислоты) обеспечивает наступление сосудосуживающего эффекта за счет снижения сосудистого тонуса.

    3. Тромбоцит принимает активное участие в процессах свертывания крови за счет содержания в гранулах тромбоцитарных факторов, которые образуются либо в тромбоцитах, либо адсорбируются в плазме крови.

    4. Динамическая функция заключается в процессах адгезии и агрегации тромбов. Адгезия – процесс пассивный, протекающий без затраты энергии. Тромб начинает прилипать к поверхности сосудов за счет интергиновых рецепторов к коллагену и при повреждении выделяется на поверхность к фибронектину. Агрегация происходит параллельно адгезии и протекает с затратой энергии. Поэтому главным фактором является наличие АДФ. При взаимодействии АДФ с рецепторами начинается активация J-белка на внутренней мембране, что вызывает активацию фосфолипаз А и С. Фосфолипаза а способствует образованию из арахидоновой кислоты тромбоксана А2 (агреганта). Фосфолипаза с способствует образованию иназитолтрифосфата и диацилглецерола. В результате активируется протеинкиназа С, повышается проницаемость для ионов Ca. В результате из эндоплазматического ретикулума они поступают в цитоплазму, где Ca активирует кальмодулин, который активирует кальцийзависимую протеинкиназу.


    46. Виды гемоглобина и его соединения, их физиологическое значение.

    Гемоглобин относится к числу важнейших дыхательных белков, принимающих участие в переносе кислорода от легких к тканям. Он является основным компонентом эритроцитов крови, в каждом из них содержится примерно 280 млн молекул гемоглобина.

    Гемоглобин является сложным белком, который относится к классу хромопротеинов и состоит из двух компонентов:

    1. железосодержащего гема – 4 %;

    2. белка глобина – 96 %.

    Гем является комплексным соединением порфирина с железом. Это соединение довольно неустойчивое и легко превращается либо в гематин, либо в гемин. Строение гема идентично для гемоглобина всех видов животных. Отличия связаны со свойствами белкового компонента, который представлен двумя парами полипептидных цепей. Различают HbA, HbF, HbP формы гемоглобина.

    В крови взрослого человека содержится до 95–98 % гемоглобина HbA. Его молекула включает в себя 2 α– и 2 β-полипептидные цепи. Фетальный гемоглобин в норме встречается только у новорожденных. Кроме нормальных типов гемоглобина, существуют и аномальные, которые вырабатываются под влиянием генных мутаций на уровне структурных и регуляторных генов.

    Внутри эритроцита молекулы гемоглобина распространяются по-разному. Вблизи мембраны они лежат к ней перпендикулярно, что улучшает взаимодействие гемоглобина с кислородом. В центре клетки они лежат более хаотично. У мужчин в норме содержание гемоглобина примерно 130–160 г/л, а у женщин – 120–140 г/л.

    Выделяют четыре формы гемоглобина:

    1. Оксигемоглобин - содержит двухвалентное железо и способен связывать кислород. Он переносит газ к тканям и органам.

    2. Метгемоглобин - содержит трехвалентное железо, не вступает в обратимую реакцию с кислородом и обеспечивает его транспорт.

    3. Карбоксигемоглобин - образует соединение с угарным газом. Он обладает высоким сродством с окисью углерода, поэтому комплекс распадается медленно. Это обусловливает высокую ядовитость угарного газа.

    4. Миоглобин - по структуре близок к гемоглобину и находится в мышцах, особенно в сердечной. Он связывает кислород, образуя депо, которое используется организмом при снижении кислородной емкости крови. За счет миоглобина происходит обеспечение кислородом работающих мышц.


    Гемоглобин выполняет дыхательную и буферную функции. 1 моль гемоглобина способен связать 4 моля кислорода, а 1 г – 1,345 мл газа. Кислородная емкость крови – максимальное количество кислорода, которое может находиться в 100 мл крови. При выполнении дыхательной функции молекула гемоглобина изменяется в размерах. Соотношение между гемоглобином и оксигемоглобином зависит от степени парциального давления в крови. Буферная функция связана с регуляцией pH крови.


    47.Эритропоэз. Лейкопоэз. Гуморальная и нервная регуляция эритро- и лейкопоэза.

    У взрослых процесс образования эритроцитов – эритропоэз, происходит в красном костном мозге плоских костей. Они образуются из ядерных стволовых клеток, проходя стадии проэритробласта, эритробласта, нормобласта, ретикулоцитов II, III, IV. Этот процесс происходит в эритробластических островках, содержащих эритроидные клетки и макрофаги костного мозга. Макрофаги выполняют следующие функции:

    1. Фагоцитируют вышедшие из нормобластов ядра.

    2. Обеспечивают эритробласты ферритином, содержащим железо.

    3. Выделяют эритропоэтины.

    4. Создают благоприятные условия для развития эритробластов.

    Созревание эритроцитов занимает около 5 дней. Из костного мозга в кровь поступают ретикулоциты, дозревающие до эритроцитов в течение суток. По их количеству в крови судят об интенсивности эритропоэза. В сутки образуется 60-80 тысяч эритроцитов на каждый микролитр крови. Т.е. ежесуточно обновляется около 1,5% эритроцитов.

    Основным гуморальным регулятором эритропоэза является гормон эритропоэтин. В основном он образуется в почках. Небольшое его количество синтезируется макрофагами. Интенсивность синтеза эритропоэтина зависит от содержания кислорода в тканях почек. При их достаточной оксигенации ген, регулирующий синтез эритропоэтина, блокируется. При недостатке кислорода, он активируется ферментами. Начинается усиленный синтез эритропоэтина. Стимулируют его синтез в почках адреналин, норадреналин, глюкокортикоиды, андрогены. Поэтому количество эритроцитов в крови возрастает в горах, при кровопотерях, стрессе и т.д. Торможение эритропоэза осуществляется его ингибиторами. Они образуются при увеличении количества эритроцитов выше нормы, повышенном содержании кислорода в крови. Эстрогены также тормозят эритропоэз. Поэтому в крови женщин эритроцитов меньше, чем у мужчин. Важное значение для эритропоэза имеют витамины В6, В12 и фолиевая кислота. Витамин В12 называют внешним фактором кроветворения. Однако для его всасывания в кишечнике необходим внутренний фактор Кастла, вырабатываемый слизистой желудка. При его отсутствии развивается злокачественная анемия.

    Гранулоциты и моноциты образуются из миелобластов через стадии промиелоцита, эозинофильных, нейтрофильных, базофильных миелоцитов или монобластов. Из монобластов сразу образуется моноциты, а из миелоцитовмелоцитов метамиелоциты, затем палочкоядерные гранулоциты и, наконец, сегментоядерные клетки. Гранулоцитопоэз стимулируют гранулоцитарные колониестимуцлирующие факторы (КСФ-Г), а моноцитопоэз – моноцитарный колониестимулирующий фактор (КСФ-М). Угнетают гранулоцитопоэз кейлоны, выделяющиеся зрелыми нейтрофилами. Кейлоны тормозят синтез ДНК в стволовых клетках белого ростка костного мозга. Задерживают созревание гранулоцитов и моноцитов простагландины Е, интерфероны.


    48. Понятие о гемостазе. Принципы остановки кровотечения. Показатели гемостаза. Сосудисто-тромбоцитарный гемостаз.
    49.Коагуляционный гемостаз. Факторы и фазы свертывания. Факторы, ускоряющие и замедляющие свертывание крови.

    Гемостаз – сложная биологическая система приспособительных реакций, обеспечивающая сохранение жидкого состояния крови в сосудистом русле и остановку кровотечений из поврежденных сосудов путем тромбирования. Система гемостаза включает следующие компоненты:

    1. cосудистую стенку (эндотелий);

    2. форменные элементы крови (тромбоциты, лейкоциты, эритроциты);

    3. плазменные ферментные системы (систему свертывания крови, систему фибринолиза, клекреин-кининовую систему);

    4. механизмы регуляции.

    Функции системы гемостаза:

    1. Поддержание крови в сосудистом русле в жидком состоянии.

    2. Остановка кровотечения.

    3. Опосредование межбелковых и межклеточных взаимодействий.

    4. Опсоническая – очистка кровяного русла от продуктов фагоцитоза небактериальной природы.

    5. Репаративная – заживление повреждений и восстановления целостности и жизнеспособности кровеносных сосудов и тканей.

    Различают два механизма гемостаза:

    1. сосудисто-тромбоцитарный (микроциркулярный);

    2. коагуляционный (свертывание крови).

    Полноценная гемостатическая функция организма возможна при условии тесного взаимодействия этих двух механизмов.

    Сосудисто-тромбоцитарный механизм гемостаза обеспечивает остановку кровотечения в мельчайших сосудах, где имеются низкое кровяное давление и малый просвет сосудов. Остановка кровотечения может произойти за счет:

    1. сокращения сосудов;

    2. образования тромбоцитарной пробки;

    3. сочетания того и другого.

    Сосудисто-тромбоцитарный механизм обеспечивает остановку кровотечения благодаря способности эндотелия синтезировать и выделять в кровь БАВ, изменяющие просвет сосудов, а также адгезивно-агрегационной функции тромбоцитов. Изменение просвета сосудов происходит за счет сокращения гладкомышечных элементов стенок сосудов как рефлекторным, так и гуморальным путем. Тромбоциты обладают способностью к адгезии (способностью прилипать к чужеродной поверхности) и агрегацией (способностью склеиваться друг с другом). Это способствует образованию тромбоцитарной пробки и запускает процесс свертывания крови.

    Остановка кровотечения за счет сосудисто-тромбоцитарного механизма гемостаза осуществляется следующим образом: при травме происходит спазм сосудов за счет рефлекторного сокращения (кратковременный первичный спазм) и действия биологически активных веществ на стенку сосудов (серотонина, адреналина, норадреналина), которые освобождаются из тромбоцитов и поврежденной ткани. Этот спазм вторичный и более продолжительный. Параллельно происходит формирование тромбоцитарной пробки, которая закрывает просвет поврежденного сосуда. В основе ее образования лежит способность тромбоцитов к адгезии и агрегации. Тромбоциты легко разрушаются и выделяют биологически активные вещества и тромбоцитарные факторы. Они способствуют спазму сосудов и запускают процесс свертывания крови, в результате которого образуется нерастворимый белок фибрин. Нити фибрина оплетают тромбоциты, и образуется фибрин-тромбоцитарная структура – тромбоцитарная пробка. Из тромбоцитов выделяется особый белок – тромбостеин, под влиянием которого происходит сокращение тромбоцитарной пробки и образуется тромбоцитарный тромб. Тромб прочно закрывает просвет сосуда, и кровотечение останавливается.

    Коагуляционный механизм гемостаза обеспечивает остановку кровотечения в более крупных сосудах (сосудах мышечного типа). Остановка кровотечения осуществляется за счет свертывания крови – гемокоагуляции. Процесс свертывания крови заключается в переходе растворимого белка плазмы крови фибриногена в нерастворимый белок фибрин. Кровь из жидкого состояния переходит в студнеобразное, образуется сгусток, который закрывает просвет сосуда. Сгусток состоит из фибрина и осевших форменных элементов крови – эритроцитов. Сгусток, прикрепленный к стенке сосуда, называется тромбом, он подвергается в дальнейшем ретракции (сокращению) и фибринолизу (растворению). В свертывании крови принимают участие факторы свертывания крови. Они содержатся в плазме крови, форменных элементах, тканях.
    1   ...   8   9   10   11   12   13   14   15   ...   32


    написать администратору сайта