Главная страница

Ответы на Вопросы на экзамен по физиологии. Помошь физа. 3. Современные представления о процессе возбуждения. Потенциал действия, его фазы. Ионные механизмы потенциала действия


Скачать 252.37 Kb.
Название3. Современные представления о процессе возбуждения. Потенциал действия, его фазы. Ионные механизмы потенциала действия
АнкорОтветы на Вопросы на экзамен по физиологии
Дата11.04.2021
Размер252.37 Kb.
Формат файлаdocx
Имя файлаПомошь физа.docx
ТипЗакон
#193675
страница17 из 18
1   ...   10   11   12   13   14   15   16   17   18

Как было установлено К. Ландштейнером и Я. Янским, в крови одних людей совсем нет агглютиногенов (группа I), в крови других содержится только агглютиноген А (группа II), у третьих — только агглютиноген В (группа III), четвертые содержат оба агглютиногена: А и В (группа IV). Групповые антигены находятся в эритроцитах, но они найдены также в лейкоцитах и тромбоцитах.

В плазме крови было открыто соответственно два агглютинирующих агента: агглютинин а и агглютинин в, которые склеивают эритроциты. В крови раз¬ных людей существуют либо один, либо два, либо ни одного агглютинина. Никогда не встречаются в организме одновременно агглютиноген А с агглюти¬нином а и агглютиноген В с агглютинином в. Поэтому в организме не бывает агглютинации собственных форменных элементов.

Таким образом, существует четыре комбинации агглютиногенов и агглюти¬нинов системы АВО и, соответственно, выделено четыре группы крови. Их обозначают: I (0) — а, в; II (А) — А, в; III (В) — В, а; IV (А, В). Исследуемую кровь смешивают с сывороткой, полученной от людей с раз¬личными группами крови. Агглютинация происходит при смешивании сыворот¬ки I группы с эритроцитами II, III и IV групп, сыворотки II группы с эритроцитами III и IV групп, сыворотки III группы с эритроцитами II и IV групп.

Группы крови у человека

Учение о группах крови значительно усложнилось в связи с открытием новых агглюти-ногенов. Например, группа А оказалась состоящей из большого ряда подгрупп, помимо того, обнаружены и новые разновидности агглютиногенов — М, N, S,P и т. д. Исходно в крови человека нет антител к этим факторам. После перели¬вания иногруппной крови такие антитела появляются, что иногда становится причиной осложнений при повторных переливаниях крови.

Людей с I группой крови раньше считали универсальными донорами, т. е, . их кровь могла быть перелита всем без исключения лицам. Однако теперь известно, что эта универсальность не абсолютна. Это связано с тем, что у людей с кровью I группы в довольно значительном проценте обнаружены иммунные анти-А- и анти-В-агглютинины. Переливание такой крови может привести к тяжелым последствиям и даже к летальному исходу. Эти данные послужили основанием к переливанию только одногруппной крови.

80. Правила переливания крови.

Раньше люди с 1 гр крови считались универсальными донорами и их кровь переливали лицам с любой группой крови. В настоящее время такие гемотрансфузии счит недопустимыми. Антигены А и В в эритроцитах 1 гр отсут или находятся в ренебрежительно малых кол-вах, поэтому практич любой V этих эритроцитов м без опасений перелить реципиентам других групп крови. Однако в плазме 1 гр находятся агглютинины => эту плазму м вводить лишь в небольших объемах. При переливании больших количеств агглютинины донора уже не разводятся плазмой реципиента и наступ агглютинация.

Кровозамещающие растворы. Это трансфузионные среды, примен с лечебной целью в кач заменителей или корректоров состава и функций крови. Они не обеспечивают полной замены цельной крови и плазмы, но м нормолизировать их функции благодаря заданному направленному действию. Кровозам растворы примен при нарушениях, возн в рез кровопотери и шока, для удаления из организма токсинов, нормолизации нарушений кисл-щел равновесия, введ пит веществ. Классификация основана на функциональных свойствах, определяющих лечебное действие. Выделяют дезинтоксикац, белкового питания, регуляторы водно-солевого и кисл-щел равновесия… Широко исп в лечебной практике электролитн растворы (изотонич раствор NaCl, раствор Рингера-Локка, лактатно-солевой раствор).

В биол и мед изотоническими растворами называют растворы, осмотическое Р которых равно осмотическому Р крови, лимфы. Для человека это 0,9% р-р NaCl, 5% р-р глюкозы. Изотонич р-р, приближенный по составу величине рН, буферным и др св-вам к сыворотке крови наз физиологическим раствором и примен в качестве кровозаменителей.

Сыворотка – плазма без фибриногена.

81. Осмотическое давление плазмы крови.

Регуляция осмотического давления плазмы крови имеет первостепенное значение для постоянства внутр среды организма. Любое отклонение осмотического Р жидкостей внеклеточного пространства (плазмы крови от интерстециальной жидкости) от нормальных величин приводит к перераспределению воды м/у клетками и окр их средой.

Клетки крови, органов и тканей имеют полупроницаемые мембраны, способные пропускать воду и не пропускать растворенные в ней вещества (диссоциаты, соли). От содержания солей главным образом и зависит осмотическое давление крови – это сила движения растворителя через полупроницаемую мембрану из менее концентрированного раствора в более концентрированный раствор. Осм Р выполняет важную роль в поддержании концентрации различных веществ, растворенных в жидкостях организма на физиологическом уровне. Следовательно осмотическое Р определяет соотношение воды м/у тканями и клетками.

Если осмотическое давление раствора больше чем осм Р содержимого клеток (гипертонич раствор) – клетки сморщ. Если раствор гипотонический – клетки ув в V. Если осм Р не равно (изотонич раствор) – нет изменения V клеток. Осмотич Р крови млекопитающих находится на отн пост оптимальном для обмена веществ уровне и равно 7,3 атм.

82. Регуляция осмотического давления плазмы крови имеет первостепенное значение для постоянства внутр среды организма. ОСМОРЕГУЛЯЦИЯ - из-за выхода на сушу. Любое отклонение осмотического Р жидкостей внеклеточного пространства (плазмы крови от интерстециальной жидкости) от нормальных величин приводит к перераспределению воды м/у клетками и окр их средой. Клетки крови, органов и тканей имеют полупроницаемые мембраны, способные пропускать воду и не пропускать растворенные в ней вещества (диссоциаты, соли). От содержания солей главным образом и зависит осмотическое давление крови - это сила движения растворителя через полупроницаемую мембрану из менее концентрированного раствора в более концентрированный раствор. Осм Р выполняет важную роль в поддержании концентрации различных веществ, растворенных в жидкостях организма на физиологическом уровне. Следовательно осмотическое Р определяет соотношение воды м/у тканями и клетками. Если осмотическое давление раствора больше чем осм Р содержимого клеток (гипертонич раствор) - клетки сморщ. Если раствор гипотонический - клетки ув в V. Если осм Р не равно (изотонич раствор) - нет изменения V клеток. Осмотич Р крови млекопитающих находится на отн пост оптимальном для обмена веществ уровне и равно 7,3 атм. Для его поддержания исп осморегул механизмы: кровь - как осмотический буфер при различных сдвигах либо в сторону осмотич гипертонии, либо гипотонии В стенках кров сосудов, тканях, гипоталамусе находятся спец осморецепторы, реагирующие на изменение осмотического давления. Рефлекторное изменение деятельности выделительных органов - удаление изб воды и поступивших в кровь солей. БУФЕРНАЯ СИСТ: 1. фосфорная: H2PO4 + OH- = H20 + HPO4-. HPO42- +H+ = H2PO4. 2. карбонат. HCO3- +H+= H2O+CO2. CO2+OH- = HCO3-. Большой вклад в поддержание рН р-ра - буферная система белков плазмы.

83. Согласно современным представлениям, образование конечной мочи является результатом трех процессов: фильтрации, реабсорб-ции и секреции. Процесс фильтрации воды и низкомолекулярных компонентов плазмы через стенки капилляров клубочка происходит только в том случае, если давление крови в капиллярах (около 70 мм рт. ст.) превышает сумму онкотического давления белков плазмы (около 30 мм рт. ст.) и давления жидкости (около 20 мм рт. ст.) в капсуле клубочка. Таким образом, эффективное фильтрационное давление, определяющее скорость клубочковой фильтрации, составляет около 20 мм рт ст. Фильтрат, поступивший в капсулу Шумлянского-Боумена, составляет первичную мочу, которая по своему содержанию отличается от состава плазмы только отсутствием белков. В сутки через почки человека протекает 1500-1800 л крови, и из каждых 10л крови, проходящей через капилляры клубочков, образуется около 1 л фильтрата, что составляет в течение суток 150-180 л первичной мочи. Такая интенсивная фильтрация возможна только в условиях обильного кровоснабжения почек и при особом строении фильтрационной поверхности капилляров клубочка, в которых поддерживается высокое давление крови. Канальцевая реабсорбция или обратное всасывание происходит в извитых канальцах и петле Генле, куда поступает образовавшаяся первичная моча. Из 150-180 л первичной мочи реабсорбируется около 148-178 л воды. В почечных канальцах остается небольшое количество жидкости - вторичная (конечная) м о ч а, с уточный объем которой равен около 1.5л. Через собирательные трубки, почечные лоханки и мочеточники она поступает в мочевой пузырь. Такое значительное обратное всасывание объясняется тем, что общая суммарная площадь канальцев почек человека составляет 40-50 м2, а длина всех извитых канальцев достигает 80-100 км. Длина канальцев одного нефрона не превышает 40-50 мм. Реабсорбции подвергаются кроме воды многие необходимые для организма органические (глюкоза, аминокислоты, витамины) и неорганические (ионы К+, N3*, Са2+, фосфаты) вещества. Канальцевая секреция осуществляется клетками канальцев, которые также способны выводить из организма некоторые вещества. Такие вещества слабо фильтруются или совсем не проходят из плазмы крови в первичную мочу (некоторые коллоиды, органические кислоты). Механизм канальцевой секреции состоит в том, что клетки эпителия нефрона захватывают названные вещества из крови и межклеточной жидкости и переносят их в просвет канальца. Другой вариант канальцевой секреции заключается в выделении в просвет канальцев новых органических веществ, синтезированных в клетках нефрона (мочевина, мочевая кислота, уробилин и др.). Скорость каждого из этих процессов регулируется в зависимости от состояния организма и характера воздействия на него. РЕГУЛЯЦИЯ мочеобразования осуществляется нейрогуморальным путем. Высшим подкорковым центром регуляции мочеобразования является гипоталамус. Импульсы от рецепторов почек по симпатическим нервам поступают в гипоталамус, где вырабатывается АНТИДИУРЕТИЧеский ГОРМОН (АДГ) или ВАЗОПРЕССИН, усиливающий реабсорбцию воды из первичной мочи и являющийся основным компонентом гуморальной регуляции. Этот гормон поступает в гипофиз, там накапливается и затем выделяется в кровь. Повышение секреции АДГ сопровождается увеличением проницаемости извитых канальцев и собирательных трубок для воды. Усиленная реабсорбция воды при недостаточном ее поступлении в организм приводит к снижению диуроеза; моча при этом характеризуется высокой концентрацией находящихся в ней веществ. При избытке воды в организме осмотическое давление плазмы падает. Через осмо- и ионорецепторы гипоталамуса и почек происходит рефлекторное снижение продукции АДГ и его поступления в кровь. В этом случае организм избавляется от избытка воды путем выделения большого количества мочи низкой концентрации. Существенное значение в гуморальной регуляции мочеобразования принадлежит гормону коры надпочечников АЛЬДОСТЕРОНУ (из группы минералокортикоидов), который увеличивает реабсорбцию ионов Nа* и секрецию ионов К+, уменьшая диурез. Нервная регуляция мочеобразования выражена слабее, чем гуморальная, и осуществляется как условнорефлекторным, так и безусловнорефлекторным путем. В основном она происходит благодаря рефлекторным изменениям просвета почечных сосудов под влиянием различных воздействий на организм. Это ведет к сдвигам почечного кровотока и, следовательно, процесса мочеобразования. Условнорефлекторное повышение диуреза на индифферентный раздражитель, подкрепленное повышенным потребление воды, свидетельствует об участии коры больших полушарий в регуляции мочеобразования. Следует иметь в виду, что почки обладают высокой способностью к саморегуляции. Выключение высших корковых и подкорковых центров регуляции не приводит к прекращению их функций.

84. ОВ - это поступление в биол систему из внеш среды различн веществ, их усвоение, изменение и выделение в окр среду продуктов распада. ОЭнергии - поглощение живым организмом энергии из окр среды (почти исключительно в виде хим св), преобретение ее виде Q или работу и возвр ее в окр среду в измененном виде. ОСНОВНОЙ ОБМЕН. Это количество энергии, которое тратится в организме для его поддержания (активн транспорт веществ, сокращение сердца, перистальтику киш, дыхат движения...). Млекопитающие самого разного размера обладают примерно одинаковым ОО при расчете на ед площади пов-ти тела. Площадь пов-ти тела пропорциональна квадрату его линейн размеров, масса - кубу линейн размеров => чем больше тело животного, тем выше у него соотношение масса/поверхность => каждый грамм массы мелкого животного должен вырабатывать больше энергии, чем такая же масса в организме крупного животного. Величина ОО зависит от: площади пов-ти тела S=W*H, W- масса, H- длина от пола: у самок ОО на 5% меньше, чем у самцов от возраста: чем больше возраст, тем ниже ОО пища: усиление ОО (динамич действие) гиперфунк щит жел => ОО ув на 50%, гипо ум ОО возбужд симпатич отдела усил ОО ОО увел курение, холод, поддерж позы Рабочий обмен. Основной потребитель энергии в орг-ме - скелетные мышцы (45% от общей массы тела). Методом непрямой калориметрии показано: у сидящего человека энергозатраты на 40% больше, у стоящего на 70% больше величины ОО. Этот уровень энергозатрат наз обмен покоя. Легкая (канцелярская) работа увелич расход энергии в 2 раза, хотьба в 3р, бег в 8 р. Кратковр физ нагрузки (неск минут) в 20 р. Классиф труда: 1) умеренной тяжести - если в теч 8ч рабочего дня общие энергозатраты не больше величины ОО чем в 3 р. 2) тяжелый труд в 3-8 раз > 3) оч тяжелый >8р. РАБОЧИЙ ОБМЕН - Сумма затрат организма на все процессы синтеза и распада. Включает основной обмен, физическую, умственную и прочие виды активности. Уровень рабочего обмена полезно знать, чтобы рассчитать калорийность рациона и спортивные нагрузки.

85. ТЕРМОРЕГ. Исключительно важна в условиях покоя и разнообр деятельности человека. С т.з. обменных процессов выработка Q(тепловой эффект) - побочн эффект, однако метаболическое Q имеет особое значение. Количество тепловой энергии, высвобожд-ся в рез ОВ, зависит от интенсивности метаболизма. В спокойном состоянии теплота образуется в небольшом кол-ве, усиливаясь при мышечной работе. Хотя кол-во вырабатываемого тепла колеблется, температура тела здорового чела остается относительно постоянной. Средняя темп колебл-ся в течение суток (днем > чем ночью). Эти колебания связаны с изменением уровня ОВ. Сохранение постоянной t тела возможно лишь при условии, что количество производимого в организме тепла = кол-ву отдаваемого. Терморегуляцию делят на: 1) ХИМИЧ - заключается в изменении уровня ОВ, и ее главн функ - образование тепла. Повыш обр-ние тепла предохр орг-м от охлажд. Наоборот, при увел темп среды, ОВ в орг-ме уменьш - защита от перегрева. Освобождение энергии происходит за счет распада Б,Ж,У. Самое значительное колич тепла обр в орг при сокращ мышц во вр физ работы: а - произвольная активность локомоторного аппарата б - дрожь - непроизвольная тонич мыш акт в - за счет ускорения обменных проц, не связ с сокращением мышц, эта форма выработки тепла наз недрожательным термогенезом. Если от химич терморегуляции зависит в осн образование тепла в орг-ме, то в 2) ФИЗИЧ терморегул главным является отдача тепла в окр среду. Перенос тепла происх благ теплопроводности и теплоизлучению. Важн роль в теплоотдаче принадлежит потовым железам - путем испарения пота. При усиленной мышечной работе или ув темп среды происх обильное потоотделение. За сутки м выд до 12л пота. ПОТОВЫЕ ЖЕЛЕЗЫ. железы кожи, выраб и выделяющие пот. Потовые железы участвуют в терморег и обусловливают специфический запах тела. Испарение пота с пов-ти кожи отнимает у организма тепло. Его колич зависит от темп среды и интенс обр-ния тепла в организме.

86. ФИЗИОЛОГИЧ ОСНОВЫ. К физико-химическим относятся осмоляльность плазмы крови, концентрация в ней таких ионов, как натрий, калий, кальций, магний, комплекс показателей кислотно-основного состояния (рН), наконец объем крови и внеклеточной жидкости. Проведенные исследования сыворотки крови здоровых лиц, испытуемых в экстремальных условиях и пациентов с различными формами патологии показали, что из всех изученных физико-химических параметров наиболее строго поддерживаются, имеют наименьший коэффициент вариаций, три - осмоляльность, концентрация свободных ионов кальция и рН. От осмоляльности плазмы крови зависит объем каждой клетки, а потому и функциональное состояние клеток всех органов и систем. Мембрана клеток слабо проницаема для большинства веществ, поэтому объем клетки будет определяться осмоляльностью внеклеточной жидкости, концентрацией внутри клетки находящихся в ее цитоплазме веществ и проницаемостью мембраны для воды. При прочих равных условиях повышение осмоляльности крови приведет к дегидратации, сморщиванию клеток, а гипоосмия вызовет набухание клеток. Вряд ли необходимо объяснение того, к каким неблагоприятным последствиям для пациента могут вести и то, и другое состояние. Ведущую роль в регуляции осмоляльности плазмы крови играют почки, в поддержании баланса ионов кальция участвуют кишечник, почки, а в гомеостазе ионов кальция принимает участие и кость. Иными словами, баланс Са2+ определяется соотношением в поступлении и выделении, а сиюминутное поддержание необходимого уровня концентрации кальция зависит и от внутреннего депо Са2+ в организме, которым является огромная поверхность кости. Система регуляции осмоляльности, концентрации различных ионов включает несколько элементов - сенсор, чувствительный элемент, рецептор, интегрирующий аппарат (центр в нервной системе) и эффектор - орган, реализующий ответ и обеспечивающий восстановление нормальных значений данного параметра. Несколько слов следует сказать о природе физиологических регуляций, обеспечивающих различные стороны водно-солевого гомеостаза. Величина осмоляльности сыворотки крови зависит от следующих элементов осморегулирующего рефлекса. Осмотическое давление крови и внеклеточной жидкости воспринимается осморецепторами, иные сенсоры воспринимают концентрацию во внеклеточной жидкости некоторых ионов. В ответ на увеличение осмоляльности растет поступление в кровь антидиуретического гормона (аргинин вазопрессин). При увеличении концентрации ионов кальция в плазме крови возрастает поступление в кровь паратгормона, а при снижении (гипокальциемии) - тирокальцитонина, т.е. эндокринная система стремится минимизировать изменения ионного состава крови и способствует восстановлению нормальных показателей. При снижении в организме объема внеклеточной жидкости и плазмы крови увеличивается секреция альдестерона, вазопрессина, а при увеличении объема внеклеточной жидкости усиливается поступление в кровь натрийуретических гормонов - атриопептида из предсердия, оубаинподобного фактора из мозга. Обычно регуляция каждого из параметров внутренней среды обеспечивается не менее чем двумя факторами, один из которых способствует сохранению вещества в организме, а другой - его выделению. Казалось, что иная картина наблюдается только в случае осморегуляции, т.е. при регуляции водного баланса - в зависимости от уровня осмоляльности крови секретируется разное количество вазопрессина. Этот гормон быстро разрушается, и полагали, что именно соотношение секреции и инактивации вазопрессина определяет скорость экскреции воды почкой. Однако оказалось, что и в этом случае имеется парный физиологически активный фактор, от секреции которого зависит восстановление водонепроницаемости стенки почечных канальцев и скорость выделения осмотически свободной воды почкой.
1   ...   10   11   12   13   14   15   16   17   18


написать администратору сайта