Главная страница
Навигация по странице:

  • ЛЕКЦИЯ УЧЕНИЕ О НЕРВНОЙ СИСТЕМЕ (НЕВРОЛОГИЯ) SYSTfiMA NERVOSUM ОБЩИЕ ДАННЫЕ

  • РАЗВИТИЕ НЕРВНОЙ СИСТЕМЫ

  • ЦЕНТРАЛЬНАЯ НЕРВНАЯ СИСТЕМА СПИННОЙ мозг

  • ЕЗ"// »/// Строение спинного мозга

  • лекции по анатомии человека 1 курс. Анатомия человека дыхательная система systema respirat0rium


    Скачать 2.39 Mb.
    НазваниеАнатомия человека дыхательная система systema respirat0rium
    Дата06.03.2022
    Размер2.39 Mb.
    Формат файлаdocx
    Имя файлалекции по анатомии человека 1 курс.docx
    ТипДокументы
    #384325
    страница15 из 27
    1   ...   11   12   13   14   15   16   17   18   ...   27

    Фасции промежности (см. рис., 190). 1. Fasciapelvis, тазовая фасция, является продолжением fascia iliaca в области малого таза. В ней различают две части — париетальную и висцеральную. Fascia pelvis parieta- lis выстилает стенки малого таза (m. obturatorius internus, т. piriformis) и переходит на верхнюю поверхность тазовой диафрагмы, покрывая сверху m. levator ani. Эта часть fascia pelvis parietalis носит также название верхней фасции тазовой диафрагмы, fascia diaphragmatis pelvis superior. Последняя, покрыв диафрагму, заворачивается на тазовые органы, про­ходящие через дно таза, где называется висцеральной частью тазовой фасции, fascia pelvis visceralis. Между тазовой фасцией и брюшиной, выстилающей таз изнутри, остаются пространства, выполненные рыхлой соединительной тканью: одно из них (spatium retropubicum) находится позади лобкового симфиза и впереди мочевого пузыря, распространяясь на его боковые стороны, другое располагается впереди крестца и позади прямой кишки (spatium retrorectale).

    Нижняя (наружная) поверхность тазовой диафрагмы покрыта нижней фасцией диафрагмы таза, fasciadiaphragmatispelvisinferior. В результате мышцы дна таза оказываются лежащими между двумя фасциями, fasciae diaphragmatis pelvis superior et inferior вместе с которыми и составляют diaphragma pelvis.

    Так как тазовая диафрагма несколько вдается вниз в виде купола, то ниже ее уровня, между ней и седалищными буграми, по сторонам заднего прохода образуется парная ямка, fossa ischiorectalis, выполненная жировой клетчаткой, paraproctus (отсюда и название воспаления ее — пара­проктит).

    1. Fasciaediaphragmatisurogenitalissuperioretinferior покрывают спереди (нижняя фасция) и сзади (верхняя) m. transversus perinei profundus и m. sphincter urethrae и вместе с ними составляют diaphragma urogenitale. Спереди, где m. transversus perinei profundus не доходит до symphysis pubica, обе фасции срастаются друг с другом, образуя фиброзную часть моче­половой диафрагмы, называемую lig. transversum perinei. Впереди этой связ­ки, между ней и lig. arcuatum pubis, проходит v. dorsalis penis s. clitoridis.

    Сзади по заднему краю того же мускула фасции также соединяются между собой. По бокам верхняя фасция мочеполовой диафрагмы, покрыв предстательную железу, переходит в fascia pelvis, а нижняя фасция срастает­

    ся по средней линии с bulbus penis, покрывает glandulae bulbourethrales и отделяет глубокие мышцы мочеполовой диафрагмы от поверхностных.

    У женщин обе фасции мочеполовой диафрагмы соединяются с влага­лищем и прирастают к его bulbus vestibuli.

    1. Fasciaperineisuperficialis, поверхностная фасни.ч промежности, яв­ляется продолжением общей подкожной фасции тела на промежность. Она покрывает поверхностные мышцы мочеполовой диафрагмы (mm. bulbospon- gidsus, ischiocavernosus et transversus perinei superficialis) и образует вместе c fascia diaphragmatis urogenitalis inferior влагалище для губчатых тел полового члена. У женщин фасция разделяется на две половины пред­дверием влагалища.

    Сосуды и нервы. Область промежности питается из a. pudenda interna. Последняя, выйдя в fossa ischiorectalis, отдает 1 — 3 аа. rectales inf., которые идут к мускулатуре и коже anus. У нижнего края diaphragma urogenitale a. pudenda interna делится на две конечные ветви — a. profunda penis и a. dorsalis penis. Вены являются спутницами артерий. Отток лимфы из промежности к nodi lymphatici inguinales superflciales. Кожа промежности иннервируется n. pudendus, который отдает nn. rectales inferidres. n. perinei и nn. scrotales (у женщин nn. labiales) posteriores, а также копчиковым сплетением.

    ЛЕКЦИЯ

    УЧЕНИЕ О НЕРВНОЙ СИСТЕМЕ (НЕВРОЛОГИЯ) SYSTfiMA NERVOSUM

    ОБЩИЕ ДАННЫЕ

    Одним из основных свойств живого вещества является раздражимость. Каждый живой организм получает раздражения из окружающего его мира и отвечает на них соответствующими реакциями, которые связывают орга­низм с внешней средой. Протекающий в самом организме обмен веществ в свою очередь обусловливает ряд раздражений, на которые организм также реагирует. Связь между участком, на который падает раздражение, и реаги­рующим органом в высшем многоклеточном организме осуществляется нервной системой.

    Проникая своими разветвлениями во все органы и ткани, нервная система связывает все части организма в единое целое, осуществляя его объедине­ние, интеграцию.

    Следовательно, нервная система есть «невыразимо сложнейший и тончай­ший инструмент сношений, связи многочисленных частей организма между собой и организма как сложнейшей системы с бесконечным числом внешних влияний» (И. П. Павлов).

    В основе деятельности нервной системы лежит рефлекс (И. М. Сеченов). «Это значит, что в тот или иной рецепторный (воспринимающий. — М. П.) нервный прибор ударяет тот или иной агент внешнего или внутреннего мира организма. Этот удар трансформируется в нервный процесс, в явление нерв­ного возбуждения. Возбуждение по нервным волокнам, как по проводам, бежит в центральную нервную систему и оттуда благодаря установлен­ным связям по другим проводам приносится к рабочему органу, трансфор­мируясь, в свою очередь, в специфический процесс клеток этого органа» (И. П. Павлов).

    Основным анатомическим элементом нервной системы является нервная клетка, которая вместе со всеми отходящими от нее отростками носит наз­вание нейрона, или нейроцита. От тела клетки отходят в одну сторону один длинный (осевоцилиндрический) отросток — аксон, или нейрит, в другую сто­рону — короткие ветвящиеся отростки — дендриты.

    Передача нервного возбуждения внутри нейрона идет в направлении от дендритов к телу клетки от нее к аксону; аксоны проводят возбуждение в направлении от тела клетки. Передача нервного импульса с одного нейрона на другой осуществляется посредством особым образом построен­ных концевых аппаратов, или синапсов (от греч. synapsis — соединение). Раз­личают аксосоматические связи нейронов, при которых разветвления одного нейрона подходят к телу клетки другого нейрона, и филогенетически более новые аксодендритические связи, когда контакт осуществляется с дендритами нервных клеток.

    Аксодендритические связи сильно развиты в филогенетически новых и высших в функциональном отношении верхних слоях коры. Они играют роль в механизме перераспределения нервных импульсов в коре и представляют, по-видимому, морфологическую основу временных связей при условнорефлек­торной деятельности. В спинном мозге и подкорковых образованиях превали­руют аксосоматические связи.

    Прерывистость пути проведения нервного импульса выражена повсюду, создавая возможность самых разнообразных связей.

    Рис. 264. Схема рефлекторной дуги.

    1 — нервное окончание чувствительного нейро­на в коже; 2 — периферический отросток чув­ствительного нейрона; 3 — спинномозговой узел; 4 — центральный отросток чувствитель­ного нейрона; 5 — вставочный нейрон; 6 — двигательная клетка переднего рога; 7 — нейрит двигательной клетки; £ —нервное окончание в мышце

    Таким образом, вся нервная система представляет собой ком­плекс нейронов, которые, вступая в соединение друг с другом, нигде не срастаются непосредст­венно между собой.

    Следовательно, нервное воз­буждение, возникнув в каком-ли­бо месте, прередается по отросткам нервных клеток от одного нейрона к другому, от другого к третьему и т. д. Наглядным примером связи устанавливаемойя при посредстве нейронов, может служить так называемая рефлекторная дуга, лежащая в основе рефлекса между органами, — наиболее простой и вместе с тем основной реакции нервной системы.

    Простая рефлекторная дуга (рис. 264) состоит по крайней мере из двух ней­ронов, из которых один связан с какой-нибудь чувствительной поверх­ностью (например, кожей), а другой с помощью своего нейрита оканчивается в мышце (или железе). При раздражении чувствительной поверхности возбуж­дение идет по связанному с ней нейрону в центростремительном направле­нии (центрипетально) к рефлекторному центру, где находится соединение (синапс) обоих нейронов. Здесь возбуждение переходит на другой нейрон и идет уже центробежно (центрифугально) к мышце или железе. В результате про­исходит сокращение мышцы или изменение секреции железы. Часто в состав простой рефлекторной дуги входит третий вставочный нейрон, который слу­жит передаточной станцией с чувствительного пути на двигательный. Кроме простой (трехчленной) рефлекторной дуги, имеются сложно устроенные много­нейронные рефлекторные дуги, проходящие через разные уровни головного мозга, включая его кору. У высших животных и человека на фоне простых и сложных рефлексов также при посредстве нейронов образуются времен­ные рефлекторные связи высшего порядка, известные под названием услов­ных рефлексов (И. П. Павлов).

    Таким образом, всю нервную систему можно себе представить состоящей в функциональном отношении из трех родов элементов.

    1. Рецептор (восприниматель), трансформирующий энергию внешнего раздражения в нервный процесс; он связан с афферентным (центростреми­тельным, или рецепторным) нейроном, распространяющим начавшееся возбуж­дение (нервный импульс) к центру; с этого явления начинается анализ (И. П. Павлов).

    2. Кондуктор (проводник), вставочный, или ассоциативный, нейрон, осуществляющий замыкание, т. е. переключение возбуждения с центростреми­тельного нейрона на центробежный. Это явление есть синтез, который пред­ставляет, «очевидно, явление нервного замыкания» (И. П. Павлов). Поэтому И. П. Павлов называет этот нейрон контактором, замыкателем.

    3. Эфферентный (центробежный) нейрон, осуществляющий ответную реакцию (двигательную или секреторную) благодаря проведению нервного возбуждения от центра к периферии, к эффектору. Эффектор — это нервное окончание эфферентного нейрона, передающее нервный импульс к рабочему органу (мышца, железа). Поэтому этот нейрон называют также эффекторным. Рецепторы возбуждаются со стороны трех чувствительных поверхностей, или рецепторных полей, организма: 1) с наружной, кожной, поверхности тела (экстероцептивное поле) при посредстве связанных с ней генетически органов чувств, получающих раздражение из внешней среды; 2) с внутренней поверхности тела (интероцептивное поле), принимаю^ щей раздражения главным образом со стороны химических веществ, поступа­ющих в полости внутренностей, и 3) из толщи стенок собственно тела (проприоцептивное поле), в которых заложены кости, мышцы и дру­гие органы, производящие раздражения, воспринимаемые специальными рецеп­торами. Рецепторы от названных полей связаны с афферентными нейронами, которые достигают центра и там переключаются при посредстве подчас весьма сложной системы кондукторов на различные эфферентные проводники; последние, соединяясь с рабочими органами, дают тот или иной эффект.

    Общая характеристика нервной системы с точки зрения кибернетики заключается в следующем. Живой организм — это уникальная кибернетическая машина, способная к самоуправлению. Эту функцию выполняет нервная система. Для самоуправления требуется 3 звена: I звено — поступление инфор­мации, которое происходит по определенному вводному каналу информации и совершается следующим образом:

    А. Возникающее из источника информации сообщение поступает на приемный конец канала информации — рецептор. Рецептор — это кодирую­щее устройство, которое воспринимает сообщение и перерабатывает его в сигнал — афферентный сигнал, в результате чего внешнее раздражение превращается в нервный импульс.

    Б. Афферентный сигнал передается далее по каналу информации, каковым является афферентный нерв.

    Имеются 3 вида каналов информации, 3 входа в них: внешние входы — через органы чувств (экстероцепторы); внутренние входы: а) через органы растительной жизни (внутренности) — интероцепторы; б) через органы животной жизни (сома, собствено тело) — проприоцепторы. II звено — перера­ботка информации. Она совершается декодирующим устройством, которое составляют клеточные тела афферентных нейронов нервных узлов и нервные клетки серого вещества спинного мозга, коры и подкорки головного мозга, образующие нервную сеть серого вещества центральной нервной системы. III звено — управление. Оно достигается передачей эфферентных сигналов из серого вещества спинного и головного мозга на исполнительный орган и осуществляется по эфферентным каналам, т. е. по эфферентным нервам с эффектором на конце.

    Имеется 2 рода исполнительных органов:

    1. Исполнительные органы животной жизни — произвольные мышцы, преимущественно скелетные.

    2. Исполнительные органы растительной жизни — непроизвольные мыш­цы и железы.

    Кроме этой кибернетической схемы, современная кибернетика установила общность принципа обратной связи для управления и координации процес­сов, совершающихся как в современных автоматах, так и в живых организ­мах; с этой точки зрения в нервной системе можно различать обратную связь рабочего органа с нервными центрами, так называемую обратную афферен- тацию. Под этим названием подразумевается передача сигналов с рабочего органа в центральную нервную систему о результатах его работы в каждый данный момент. Когда центры нервной системы посылают эфферентные импульсы в исполнительный орган, то в последнем возникает определенный рабочий эффект (движение, секреция). Этот эффект побуждает в испол­нительном органе нервные (чувствительные) импульсы, которые по афферент­ным путям поступают обратно в спинной и головной мозг и сигнализи­руют о выполнении рабочим органом определенного действия в данный мо­мент. Это и составляет сущность «обратной афферентации», которая, образно говоря, есть доклад центру о выполнении приказа на периферии. Так, при взятии рукой предмета глаза непрерывно измеряют расстояние между рукой и целью и свою информацию посылают в виде афферентных сигналов в мозг. В мозге происходит замыкание на эфферентные нейроны, которые передают двигательные импульсы в мышцы руки, производящие необходимые для взя­тия ею предмета действия. Мышцы одновременно воздействуют на находя­щиеся в них рецепторы, беспрерывно посылающие мозгу чувствительные сигналы, информирующие о положении руки в каждый данный момент. Такая двусторонняя- сигнализация по цепям рефлексов продолжается до тех пор, пока расстояние между кистью руки и предметом не будет равно нулю, т. е. пока рука не возьмет предмет.

    Следовательно, все время совершается самопроверка работы органа, воз­можная благодаря механизму «обратной афферентации», который имеет характер замкнутого круга в последовательности: центр (прибор, задающий программу действия) — эффектор (мотор) — объект (рабочий орган) — рецептор (восприемник) — центр.

    Существование такой замкнутой кольцевой, или круговой, цепи реф­лексов центральной нервной системы и обеспечивает все сложнейшие коррек­ции протекающих в организме процессов при любых изменениях внутрен­них и внешних условий. Без механизмов обратной связи живые организмы не смогли бы разумно приспособиться к окружающей среде.

    Следовательно, вместо прежнего представления о том, что в основе стро­ения и функции нервной системы лежит разомкнутая рефлекторная дуга, теория информации и обратной связи («обратной афферентации») дает новое представление о замкнутой кольцевой цепи рефлексов, о круго­вой системе эфферентно-афферентной сигнализации. Не разомкнутая дуга, а сомкнутый круг — таково новейшее представление о строении и функции нервной системы. Таким образом, в свете данных кибернетики нервная система характеризуется как система информации и управления.

    Единая нервная система человека условно делится на 2 части соответст­венно двум основным частям организма — растительной и животной: 1) часть нервной системы, иннервирующая все внутренности, а также эндокринную систему и непроизвольные мышцы кожи, сердце и сосуды, т. е. органы расти­тельной жизни, создающие внутреннюю среду организма, называется расти­тельной нервной системой, вегетативной или автономной: 2) другая часть нерв­ной системы, управляющая произвольной мускулатурой скелета и не­которых внутренностей (язык, гортань, глотка) и иннервирующая главным образом органы животной жизни, называется животной нервной системой, анимальной. Ее также не совсем удачно называют соматической, имея в виду сому, т. е. собственно тело. Она заведует по преимуществу функциями связи организма с внешней средой, обусловливая чувствительность организма (при посредстве органов чувств) и движения мускулатуры скелета. Условность и ограниченность приведенной выше классификации явствует из того, что вегета­тивная нервная система имеет отношение к иннервации всех органов, в том числе и соматических, так как она участвует в их питании (трофика), а также определяет тонус скелетной мускулатуры.

    И. П. Павлов и особенно К. М. Быков со своими учениками (В. Н. Черниговский и др.) показали зависимость деятельности всех внутрен­ностей и сосудов от коры головного мозга.

    Вегетативная часть нервной системы в свою очередь делится на две части: симпатическую и парасимпатическую, которые для краткости также называются системами. Симпатическая система иннервирует все части организма, а пара­симпатическая — лишь определенные области его (см. далее).

    Кроме такой классификации, соответствующей строению организма, нерв­ную систему делят по топографическому принципу на центральный и перифери­ческий отделы, или системы. Под центральной нервной системой разумеется спинной и головной мозг, которые состоят из серого и белого вещества, под периферической — все остальное, т. е. нервные корешки, узлы, сплетения, нервы и периферические нервные окончания. Серое вещество спинного и головного мозга — это скопления нервных клеток вместе с ближайшими раз­ветвлениями их отростков, называемые нервными центрами. Нервный центр — это «скопление и сцепление нервных клеток» (И. П. Павлов).

    Белое вещество — это нервные волокна (отростки нервных клеток, ней­риты), покрытые миелиновой оболочкой (откуда и происходит белый цвет) и связывающие отдельные центры между собой, т. е. проводящие пути. Как в центральном, так и в периферическом отделах нервной системы содержатся элементы анимальной и вегетативной частей ее, чем достигается единство всей нервной системы.

    Высшим отделом ее, который ведает всеми процессами организма, как животными, так и растительными, является кора большого мозга.

    РАЗВИТИЕ НЕРВНОЙ СИСТЕМЫ

    Филогенез нервной системы в кратких чертах сводится к следую­щему. У простейших одноклеточных организмов (амеба) нервной системы еще нет, а связь с окружающей средой осуществляется при помощи жидкостей, находящихся внутри и вне организма, — гуморальная (humor — жидкость), до- нервная, форма регуляции.

    В дальнейшем, когда возникает нервная система, появляется и другая форма регуляции — нервная. По мере развития нервной системы нервная регуляция все больше подчиняет себе гуморальную, так что образуется еди­ная нейрогуморальная регуляция при ведущей роли нервной системы. Послед­няя в процессе филогенеза проходит ряд основных этапов (рис. 265).

    1. этап — сетевидная нервная система. На этом этапе (кишечнополост­ные) нервная система, например гидры, состоит из нервных клеток, много­численные отростки которых соединяются друг с другом в разных направле­ниях, образуя сеть, диффузно пронизывающую все тело животного. При раздражении любой точки тела возбуждение разливается по всей нервной сети и животное реагирует движением всего тела. Отражением этого этапа у чело­века является сетевидное строение интрамуральной нервной системы пищева­рительного тракта.

    2. этап — узловая нервная система. На этом этапе (беспозвоночные) нерв­ные клетки сближаются в отдельные скопления или группы, причем из скоплений клеточных тел получаются нервные узлы — центры, а из скоплений отростков — нервные стволы — нервы. При этом в каждой клетке число от­ростков уменьшается и они получают определенное направление. Соответст­венно сегментарному строению тела животного, например у кольчатого червя, в каждом сегменте имеются сегментарные нервные узлы и нервные стволы. Последние соединяют узлы в двух направлениях: поперечные стволы связы­вают узлы данного сегмента, а продольные — узлы разных сегментов. Благодаря этому нервные импульсы, возникающие в какой-либо точке тела, не разливаются по всему телу, а распространяются по поперечным стволам в пределах данного сегмента. Продольные стволы связывают нервные сег-



    воначальной ступени

    развития животных особенно большую роль играл

    Рис. 265. Этапы развития нервной системы.

    1, 2 — диффузная нервная система гидры; 3,4 — узловая нервная систе­ма кольчатого червя.

    менты в одно целое. На головном конце животно­го, который при движе­нии вперед соприкасается с различными предметами окружающего мира, раз­виваются органы чувств, в связи с чем головные узлы развиваются сильнее остальных, являясь про­образом будущего голов­ного мозга. Отражением этого этапа является со­хранение у человека при­митивных черт (разбро­санность на периферии узлов и микроганглиев) в строении вегетативной нервной системы.

    1. этап — трубчатая нервная система. На пер­

    аппарат движения, от совершенства которого зависит основное условие существования животного — питание (передвижение в поисках пищи, захва­тывание и поглощение ее).

    У низших многоклеточных развился перистальтический способ передви­жения, что связано с непроизвольной мускулатурой и ее местным нерв­ным аппаратом. На более высокой ступени перистальтический способ сме­няется скелетной моторикой, т. е. передвижением с помощью системы жестких рычагов — поверх мышц (членистоногие) и внутри мышц (позво­ночные). Следствием этого явилось образование произвольной (скелетной) мускулатуры и центральной нервной системы, координирующей перемещение отдельных рычагов моторного скелета.

    Такая центральная нервная система у хордовых (ланцетник) возникла в виде метамерно построенной нервной трубки с отходящими от нее сегментар­ными нервами ко всем сегментам тела, включая и аппарат движения,— туловищный мозг. У позвоночных и человека туловищный мозг становится спинным. Таким образом, появление туловищного мозга связано с усовершен­ствованием в первую очередь моторного вооружения животного. Наряду с этим уже у ланцетника имеются и рецепторы (обонятельный, световой). Дальнейшее развитие нервной системы и возникновение головного мозга обус­ловлены преимущественно усовершенствованием рецепторного вооружения.

    Так как большинство органов чувств возникает на том конце тела животного, который обращен в сторону движения, т. е. вперед, то для восприятия поступающих через них внешних раздражений развивается перед­ний конец туловищного мозга и образуется головной мозг, что совпадает с обособлением переднего конца тела в виде головы — цефализация (cephal — голова).

    Е. К. Сепп в учебнике по нервным болезнямIII дает упрощенную, но удобную для изучения схему филогенеза головного мозга, которую мы и приводим. Согласно этой схеме, на I этапе развития головной мозг состоит из трех от­делов: заднего, среднего и переднего, причем из этих отделов в первую оче­редь (у низших рыб) особенно развивается задний, или ромбовидный, мозг (rhombencephalon). Развитие заднего мозга происходит под влиянием рецепто­ров акустики и гравитации (рецепторы VIII пары черепных нервов), имеющих ведущее значение для ориентации в водной среде.

    В дальнейшей эволюции задний мозг дифференцируется на продолго­ватый мозг, являющийся переходным отделом от спинного мозга к голов­ному и потому называемый myelencephalon (myelds — спинной мозг, encep­halon — головной), и собственно задний мозг — metencephalon, из ко­торого развиваются мозжечок и мост.

    В процессе приспособления организма к окружающей среде путем изме­нения обмена веществ в заднем мозге как наиболее развитом на этом этапе отделе центральной нервной системы возникают центры управления жизненно важными процессами растительной жизни, связанными, в частности, с жабер­ным аппаратом (дыхание, кровообращение, пищеварение и др.). Поэтому в продолговатом мозге возникают ядра жаберных нервов (группа X пары — вагуса). Эти жизненно важные центры дыхания и кровообращения остаются в продолговатом мозге человека, чем объясняется смерть, наступающая при повреждении продолговатого мозга. На II этапе (еще у рыб) под влиянием зрительного рецептора особенно развивается средний мозг, mesencephalon. На III этапе, в связи с окончательным переходом животных из водной среды в воздушную, усиленно развивается обонятельный рецептор, восприни­мающий содержащиеся в воздухе химические вещества, сигнализирующие своим запахом о добыче, опасности и других жизненно важных явлениях окружающей природы.

    Под влиянием обонятельного рецептора развивается передний мозг — prosencephalon, вначале имеющий характер чисто обнятельного мозга. В даль­нейшем передний мозг разрастается и дифференцируется на промежуточ­ный— diencephalon и конечный — telencephalon.

    В конечном мозге как в высшем отделе центральной нервной системы появляются центры для всех видов чувствительности. Однако нижележащие центры не исчезают, а сохраняются, подчиняясь центрам вышележащего этажа. Следовательно, с каждым новым этапом развития головного мозга возникают новые центры, подчиняющие себе старые. Происходит как бы пере­движение функциональных центров к головному концу и одновременное подчинение филогенетически старых зачатков новым. В результа­те центры слуха, впервые возникшие в заднем мозге, имеются также в среднем и переднем, центры зрения, возникшие в среднем, имеются и в переднем, а центры обоняния — только в переднем мозге. Под влиянием обонятельного рецептора развивается небольшая часть переднего мозга, называемая поэтому обонятельным мозгом (rhinencephalon), который покрыт корой серого ве­щества — старой корой (paleocortex).

    Совершенствование рецепторов приводит к прогрессивному развитию переднего мозга, который постепенно становится органом, управляющим всем поведением животного. Различают две формы поведения животного: инстинктивное, основанное на видовых реакциях (безусловные рефлексы), и индивидуальное, основанное на опыте индивида (условные рефлексы). Соответственно этим двум формам поведения в конечном мозге развивается две группы центров серого вещества: базальные узлы, имеющие строение ядер

    (ядерные центры), и кора серого вещества, имеющая строение сплошного экрана (экранные центры). При этом вначале развивается «подкорка», а затем кора. Кора возникает при переходе животного от водного к наземному образу жизни и обнаруживается отчетливо у амфибий и рептилий. Даль­нейшая эволюция нервной системы характеризуется тем, что кора голов­ного мозга все более и более подчиняет себе функции всех нижележащих центров, происходит постепенная кортиколизация функций. ,

    Необходимой формацией для осуществления высшей нервной деятель* ности является новая кора, расположенная на поверхности полушарий и приобретающая в процессе филогенеза шестислойное строение. Благодаря усиленному развитию новой коры конечный мозг у высших позвоночных пре­восходит все остальные отделы головного мозга, покрывая их, как плащом (pallium). Развивающийся новый мозг (neencephalon) оттесняет в глубину старый мозг (обонятельный), который как бы свертывается в виде гиппокампа (hyppocampus), остающегося по-прежнему обонятельным центром. В резуль­тате плащ, т. е. новый мозг (neencephalon), резко преобладает над остальными отделами мозга — старым мозгом (paleencephalon).

    Итак, развитие головного мозга совершается под влиянием развития рецепторов, чем и объясняется, что самый высший отдел головного мозга — кора (серое вещество) — представляет, как учит И. П. Павлов, совокупность корковых концов анализаторов, т. е. сплошную воспринимающую (рецептор­ную) поверхность. Дальнейшее развитие мозга у человека подчиняется иным закономерностям, связанным с его социальной природой. Кроме естествен­ных органов тела, имеющихся и у животных, человек стал пользоваться орудиями труда. Орудия труда, ставшие искусственными органами, дополнили естественные органы тела и составили техническое вооружение человека.

    С помощью этого вооружения человек приобрел возможность не только приспосабливаться самому к природе, как это делают животные, но и приспо­сабливать природу к своим нуждам. Труд, как уже отмечалось, явился решающим фактором становления человека, а в процессе общественного труда возникло необходимое для общения людей средство — речь. «Сначала труд, а затем и вместе с ним членораздельная речь явились двумя самыми главными стимулами, под влиянием которых мозг обезьяны постепенно превратился в человеческий мозг, который, при всем своем сходстве с обезьяньим, далеко превосходит его по величине и совершенству» (Маркс К., Энгельс Ф. Соч., 2-е изд., т. 20, с. 490). Это совершенство обусловлено максимальным развитием конечного мозга, особенно его коры — новой коры (neocortex).

    Кроме анализаторов, воспринимающих различные раздражения внешнего мира и составляющих материальный субстрат конкретно-наглядного мышле­ния, свойственного животным (первая сигнальная система действительности, по И. П. Павлову), у человека возникла способность абстрактного, отвлечен­ного мышления с помощью слова, сначала слышимого (устная речь) и позднее видимого (письменная речь). Это составило вторую сигнальную систему, по И. П. Павлову, которая в развивающемся животном мире явилась «чрез­вычайной прибавкой к механизмам нервной деятельности» (И. П. Павлов). Материальным субстратом второй сигнальной системы стали поверхностные слои новой коры. Поэтому кора конечного мозга достигает своего наи­высшего развития у человека. Таким образом, эволюция нервной системы сводится к прогрессивному развитию конечного мозга, который у высших позвоночных и особенно у человека в связи с усложнением нервных функций достигает огромных размеров.

    Изложенные закономерности филогенеза обусловливают эмбриогенез нервной системы человека. Нервная система происходит из наружного заро-

    Рис. 266. Стадии эмбриогенеза нерв­ной системы; поперечный схемати­ческий разрез.

    А — медуллярная пластинка; В, С — медулляр­ная бороздка; D, Е— нервная трубка; 1 — роговой листок (эпидермис); 2 — нейральные гребни.

    дышевого листка, или эктодермы (см. «Введение»). Эта последняя образует продольное утолщение, называемое медуллярной пластин­кой (рис. 266). Медуллярная пла­стинка скоро углубляется в ме­дуллярную бороздку, края которой (медуллярные валики) постепен­но становятся выше и затем срастаются друг с другом, превращая бо­роздку в трубку {мозговая трубка). Мозговая трубка представляет собой зачаток центральной части нервной системы. Задний конец трубки образует зачаток спинного мозга, передний расширенный конец ее путем перетяжек расчленяется на три первичных мозговых пузыря, из которых происходит головной мозг во всей его сложности.

    Нервная пластинка первоначально состоит только из одного слоя эпите­лиальных клеток. Во время замыкания ее в мозговую трубку количество кле­ток в стенках последней увеличивается, так что возникает три слоя: внут­ренний (обращенный в полость трубки), из которого происходит эпителиаль­ная выстилка мозговых полостей (эпендима центрального канала спинного мозга и желудочков головного); средний, из которого развивается серое вещество мозга (зародышевые нервные клетки — нейробласты); наконец, наружный, почти не содержащий клеточных ядер, развивающийся в белое вещество (отростки нервных клеток — нейриты). Пучки нейритов нейробластов распространяются или в толще мозговой трубки, образуя белое вещество мозга, или же выходят в мезодерму и затем соединяются с молодыми мышечными клетками (миобластами). Таким путем возникают двигательные нервы.

    Чувствительные нервы возникают из зачатков спинномозговых узлов, ко­торые заметны уже по краям медуллярной бороздки у места перехода ее в кожную эктодерму. Когда бороздка смыкается в мозговую трубку, зачатки смещаются на ее дорсальную сторону, располагаясь по средней линии. Затем клетки этих зачатков перемещаются вентрально и располагаются вновь по бокам мозговой трубки в виде так называемых нейральных гребней. Оба нейральных гребня перешнуровываются четкообразно по сегментам дор­сальной стороны зародыша, вследствие чего получается на каждой стороне ряд спинномозговых узлов, ganglia spinalia. В головной части мозговой трубки они доходят только до области заднего мозгового пузырька, где образуют зачатки узлов чувствительных черепных нервов. В ганглиозных зачатках развиваются нейробласты, принимающие вид биполярных нервных клеток, один из отростков которых врастает в мозговую трубку, другой идет на периферию, образуя чувствительный нерв. Благодаря сращению на некотором протяжении от начала обоих отростков получаются из биполярных так называемые ложные униполярные клетки с одним отростком, делящимся в форме буквы «Т», являющиеся характерными для спинномозговых узлов взрослого. Центральные отростки клеток, проникающие в спинной мозг, составляют задние корешки спинномозговых нервов, а периферические отро­стки, разрастаясь вентрально, образуют (вместе с вышедшими из спинного мозга эфферентными волокнами, составляющими передний корешок) сме­

    шанный спинномозговой нерв. Из нейральных гребней возникают также зачатки вегетативной нервной системы, о чем подробно см. «Вегетативная (автономная) нервная система».

    ЦЕНТРАЛЬНАЯ НЕРВНАЯ СИСТЕМА

    СПИННОЙ мозг

    Развитие спинного мозга. Как уже отмечалось, филогенетически спинной мозг (туловищный мозг ланцетника) появляется на III этапе развития нерв­ной системы (трубчатая нервная система). В это время головного мозга еще нет, поэтому туловищный мозг имеет центры для управления всеми процес­сами организма, как вегетативными, так и анимальными (висцеральные и соматические центры). Соответственно сегментарному строению тела туло­вищный мозг имеет сегментарное строение, он состоит из связанных между собой невромеров, в пределах которых замыкается простейшая рефлекторная дуга. Метамерное строение спинного мозга сохраняется и у человека, чем и обусловливается наличие у него коротких рефлекторных дуг.

    С появлением головного мозга (этап кефализации) в нем возникают высшие центры управления всем организмом, а спинной мозг попадает в подчиненное положение. Спинной мозг не остается только сегментарным аппаратом, а становится и проводником импульсов от периферии к голов­ному мозгу и обратно, в нем развиваются двусторонние связи с головным мозгом. Таким образом, в процессе эволюции спинного мозга образуется два аппарата: более старый сегментарный аппарат собственных связей спинного мозга и более новый надсегментарный аппарат двусторонних проводящих путей к головному мозгу. Такой принцип строения наблюдается и у человека.

    Решающим фактором образования туловищного мозга является приспо­собление к окружающей среде при помощи движения. Поэтому строение спинного мозга отражает способ передвижения животного. Так, например, у пресмыкающихся, не имеющих конечностей и передвигающихся с помощью туловища (например, у змеи), спинной мозг развит равномерно на всем протяжении и не имеет утолщений. У животных, пользующихся конечностями, возникает два утолщения, при этом, если более развиты передние конеч­ности (например, крылья птиц), то преобладает переднее (шейное) утолщение спинного мозга; если более развиты задние конечности (например, ноги страуса), то увеличено заднее (поясничное) утолщение; если в ходьбе участвуют и передние, и задние конечности (четвероногие млекопитающие), то одинаково развиты оба утолщения. У человека в связи с более сложной деятельностью руки как органа труда шейное утолщение спинного мозга дифференциро­валось сильнее, чем поясничное.

    Отмеченные факторы филогенеза играют роль в развитии спинного мозга и в онтогенезе. Спинной мозг развивается из нервной трубки, из ее заднего отрезка (из переднего возникает головной мозг). Из вентрального отдела трубки образуются передние столбы серого вещества спинного мозга (клеточ­ные тела двигательных нейронов), прилегающие к ним пучки нервных волокон и отростки названных нейронов (двигательные корешки). Из дор­сального отдела возникают задние столбы серого вещества (клеточные тела вставочных нейронов), задние канатики (отростки чувствительных нейронов).

    Таким образом, вентральная часть мозговой трубки является первично двигательной, а дорсальная — первично чувствительной. Деление на моторную (двигательную) и сенсорную (чувствительную) области простирается на всю нервную трубку и сохраняется в стволе головного мозга.

    Рис. 267. Спинной мозг.

    а — вид спереди; б — вид сзади. Твердая и паутинная обо­лочки разрезаны. Сосудистая оболочка снята. Римскими цифрами обозначен порядок расположения шейных (С), грудных (Th), поясничных (L) и крестцовых (S) спинно­мозговых нервов; 1 — intumescentia cervicalis; 2 — gangl. spinale;

    3 — dura mater medullae spinalis; 4 — intumescentia lumbosacra- lis; 5 — conus medullaris; 6 — cauda equina.

    Из-за редукции каудальной части спин­ного мозга получается тонкий тяж из нерв­ной ткани, будущая filum terminate. Пер­воначально, на 3-м месяце утробной жизни, спинной мозг занимает весь позвоночный канал, затем позвоночник начинает расти скорее, чем мозг, вследствие чего конец последнего постепенно перемещается кверху (краниально). При рождении конец спин­ного мозга уже находится на уровне III поясничного позвонка, а у взрослого дости­гает высоты I — II поясничного позвонка. Благодаря такому «восхождению» спинного мозга отходящие от него нервные корешки принимают косое направление (рис. 267).


    ъ*У1

    ^У//

    УН/

    *ых



    W/

    W//

    ^/z

    Ч>//

    ^///

    ^/у

    мозга, которая

    спинного

    ЕЗ"// »///
    Строение спинного мозга

    Спинной мозг, medullaspinalis (греч. myelos), лежит в позвоночном канале и у взрослых представляет собой длинный (45 см у мужчин и 41—42 см у женщин), несколько сплюснутый спереди назад ци­линдрический тяж, который вверху (крани­ально) непосредственно переходит в про­долговатый мозг, а внизу (каудально) окан­чивается коническим заострением, conus me­dullaris, на уровне II поясничного позвонка (см. рис. 267). Знание этого факта имеет практическое значение (чтобы не повредить спинной мозг при поясничном проколе ' с целью взятия спинномозговой жидкости или с целью спинномозговой анестезии, надо вводить иглу шприца между остисты­ми отростками III и IV поясничных поз­вонков).

    От conus medullaris отходит книзу так называемая концевая нить, filumterminate, представляющая атрофированную нижнюю внизу состоит из продолжения оболочек спинного мозга и прикрепляется ко II копчиковому позвонку.


    1   ...   11   12   13   14   15   16   17   18   ...   27


    написать администратору сайта